The Middle-Pleistocene (~300 ka) Rodderberg maar-scoria cone volcanic complex (Bonn, Germany): eruptive history, geochemistry, and thermoluminescence dating

  • H. Paulick
  • C. Ewen
  • H. Blanchard
  • L. Zöller
Original Paper


The Rodderberg volcanic complex (RVC) is located within the city limits of Bonn (Germany) approximately 20 km to the north of the Quaternary East Eifel Volcanic Field (EEVF). It is the product of intense phreatomagmatic volcanism forming a 90 m deep maar crater and strombolian eruptions. Deposit features indicate that the location of the vent(s) shifted from N to S during the strombolian phase. The erupted leucite-nephelinite magma (on the order of ca. 1 × 10−2 km3) was largely homogenous with minor, stratigraphically controlled, variation in olivine and clinopyroxene microphenocryst content. Stratigraphic evidence and thermoluminescence dating indicate that the RVC erupted during the glacial MIS 8 at around 300 ka. During this time, the EEVF experienced a transitional stage between two major phases of volcanic activity involving a change in magma sources. This is consistent with the RVC geochemical data which show affinities to both the older EEVF leucite-nephelinite association (430–380 ka) and the younger basanite association (<215 ka). In the Eifel, magma ascent through the upper crust is apparently linked to tectonic fractures. It may be speculated that a tectonically controlled diking event channeled magma to the north of the main EEVF and that the RVC represents an exceptional surficial expression of a significantly larger subsurface intrusion. This scenario would be consistent with recent observations of diking-related volcanism in the East African Rift zone and previously inferred models for magma ascent in similar intraplate volcanic fields.


Quaternary volcanism Thermoluminescence Eifel volcanic field Geochemistry Maar Scoria Cone Tephra Geochronology 



Many of the ideas and data presented in this paper are results of two recent MSc theses completed at the University of Bonn (Blanchard 2002; Ewen 2005). HP wishes to express his appreciation for the permission to lead this contribution. R. Hoffbauer (University of Bonn) helped with XRF analyses and C.-D. Garbe-Schönberg (University of Kiel) provided the ICP-MS trace element analyses. M. Fischer assisted during the TL dating experiments at the University of Bayreuth. The authors acknowledge constructive discussions regarding the Rodderberg eruption with N. Froitzheim, C. Münker, I. Schmid, and H-U Schmincke. Careful reviews by K. Nemeth, S. Kutterolf, and J. White were helpful in order to improve the interpretation and the presentation of this paper.


  1. Ahorner L (1962) Untersuchungen zur quartären Bruchtektonik der Niederrheinischen Bucht. Eiszeitalter Gegenwart 13:24–105Google Scholar
  2. Aitken MJ (1985) Thermoluminescence Dating. Academic Press, London, pp 1–359Google Scholar
  3. Auer A, Martin U, Nemeth K (2007) The Fekete-hegy (Balaton Highland, Hungary) ‘soft-substrate’ and ‘hard-substrate’ maar volcanoes in an aligned volcanic complex; implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245. doi: 10.1016/j.jvolgeores.2006.06.008 CrossRefGoogle Scholar
  4. Bartels G, Hard G (1973) Rodderbergtuff im Rheinischen Quartärprofil. Zur zeitlichen Stellung des Rodderberg-Vulkanismus. Catena 1:31–56. doi: 10.1016/S0341-8162(73)80004-9 CrossRefGoogle Scholar
  5. Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetical reversal. Earth Planet Sci Lett 126:91–108. doi: 10.1016/0012-821X(94)90244-5 CrossRefGoogle Scholar
  6. Bednarz U, Schmincke HU (1990) Evolution of the Quaternary melilite-nephelinite Herchenberg Volcano (East Eifel). Bull Volcanol 52:426–444. doi: 10.1007/BF00268924 CrossRefGoogle Scholar
  7. Berg G, Burre O, Knapp G (1995) Geologische Karte von Nordrhein-Westfalen, 1 : 25.000, Blatt 5309 Königswinter. Geologischer Dienst NRW, Krefeld, GermanyGoogle Scholar
  8. Boogard Cvd, Boogard Pvd, Schmincke H-U (1989) Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich. Eiszeitalter Gegenwart 39:62–86Google Scholar
  9. Boogard Pvd, Hall CM, Schmincke H-U, York D (1987) 40Ar/39Ar laser dating of single grains: Ages of Quaternary tephra from the East Eifel Volcanic Field, FRG. Geophys Res Lett 14:1211–1214CrossRefGoogle Scholar
  10. Blanchard H (2002) Neue Erkenntnisse zur Eruptions- und Landschaftsgeschichte des Rodderbergs bei Bonn. Masters thesis, Geographisches Institut, Universität Bonn, pp 98Google Scholar
  11. Braun FJ (1974) Der Rodderberg bei Bonn—Ein erloschener Vulkan—Eine Fundgrube für Geologen. Niederrhein 41:54–60Google Scholar
  12. Burre O (1933) Beiträge zur Kenntnis des Quartärs im Rheintale in Höhe des Siebengebirges. Jahrbuch der preußischen geologischen Landesanstalt 53:247–260Google Scholar
  13. Chen Y-G, Wu W-S, Chen C-H, Liu T-K (2001) A date for a volcanic eruption inferred from a siltstone xenolith. Quat Sci Rev 20:869–873. doi: 10.1016/S0277-3791(00)00047-0 CrossRefGoogle Scholar
  14. Cheong CS, Choi JH, Sohn YK, Kim JC, Jeong GY (2007) Optical dating of hydromagmatic volcanoes on the southwestern coast of Jeju Island, Korea. In: Grun R, Roberts RG (eds) LED 2005; 11th international conference on Luminescence and electron spin resonance dating. Quatern Geochronol, vol 2, pp 266–271Google Scholar
  15. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, London, pp 331–343Google Scholar
  16. Dechen vH (1861) Geognostischer Führer in das Siebengebirge am Rhein. Verlag Henry & Cohen, Bonn, pp 431Google Scholar
  17. Ewen C (2005) Der Quartäre Rodderberg-Vulkankomplex südlich von Bonn – vulkanologische und petrogenetische Entwicklung. Masters thesis, Mineralogisch-Petrologisches Institut, Universität Bonn, pp 105 [available on-line as an electronic publication]Google Scholar
  18. Fattahi M, Stokes S (2003) Dating volcanic and related sediments by luminescence methods: A review. Earth Sci Rev 62:229–264. doi: 10.1016/S0012-8252(02)00159-9 CrossRefGoogle Scholar
  19. Ferrucci M, Pertusati S, Sulpizio R, Zanchetta G, Pareschi MT, Santacroce R (2005) Volcaniclastic debris flows at La Fossa Volcano (Vulcano Island, southern Italy); insights for erosion behavior of loose pyroclastic material on steep slopes. J Volcanol Geotherm Res 145:173–191. doi: 10.1016/j.jvolgeores.2005.01.013 CrossRefGoogle Scholar
  20. Franz G, Steiner G, Volker F, Pudlo D, Hammerschmidt K (1999) Plume related alkaline magmatism in central Africa—the Meidob Hills (W Sudan). Chem Geol 157:27–47. doi: 10.1016/S0009-2541(98)00195-8 CrossRefGoogle Scholar
  21. Frechen J (1976) Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel - vulkanologisch-petrographische Exkursionen. Sammlung geologischer Führer, 56, Borntraeger, Berlin pp 209Google Scholar
  22. Garbe-Schönberg C-D (1993) Simultaneous determination of 37 trace elements in 28 international rock standards by ICP-MS. Geost News 17:81–93. doi: 10.1111/j.1751-908X.1993.tb00122.x CrossRefGoogle Scholar
  23. Gessner J (1990) Die vulkanologische, tektonische und chemische Entwicklung des quartären Wannenkopf-Vulkankomplexes in der Osteifel. Masters thesis. Ruhr Universität Bochum, pp 217Google Scholar
  24. Grabert H (1998) Abriss der Geologie von Nordrhein-Westfalen. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 351Google Scholar
  25. Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296. doi: 10.1016/0012-821X(95)00174-B CrossRefGoogle Scholar
  26. Hambach U (2001) Bericht zur gesteinsmagnetisch/sedimentologischen Bearbeitung des Kernmaterials der Forschungsbohrung Rodderberg I (55 m Kern). Report to the Geologisches Landesamt NRW, Krefeld, Germany, pp 36Google Scholar
  27. Heiken G (2004) Geologic field work in a city…are you crazy? Abstracts with Programs—Geological Society of America, Boulder, CO, United States, 36: 102Google Scholar
  28. Hill RI (1991) Starting plumes and continental break-up. Earth Planet Sci Lett 104:398–416. doi: 10.1016/0012-821X(91)90218-7 CrossRefGoogle Scholar
  29. Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: a complex interaction between external water and rinsing basaltic magma. J Volcanol Geotherm Res 21:207–231. doi: 10.1016/0377-0273(84)90023-4 CrossRefGoogle Scholar
  30. Houghton BF, Schmincke H-U (1989) Rothenberg scoria cone, East Eifel: a complex Strombolian and phreatomagmatic volcano. Bull Volcanol 52:28–48. doi: 10.1007/BF00641385 CrossRefGoogle Scholar
  31. Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55:414–420. doi: 10.1007/BF00302001 CrossRefGoogle Scholar
  32. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 1989:451–462. doi: 10.1007/BF01078811 CrossRefGoogle Scholar
  33. Houghton BF, Wilson CJN, Rosenberg MD, Smith IEM, Parker RJ (1996) Mixed deposits of complex magmatic and phreatomagmatic volcanism; an example from Crater Hill, Auckland, New Zealand. Bull Volcanol 58:59–66. doi: 10.1007/s004450050126 CrossRefGoogle Scholar
  34. Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism; a case study from New Zealand. J Volcanol Geotherm Res 91:97–120. doi: 10.1016/S0377-0273(99)00058-X CrossRefGoogle Scholar
  35. Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW et al (2006) Proximal tephra hazards; recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 155:138–149. doi: 10.1016/j.jvolgeores.2006.02.006 CrossRefGoogle Scholar
  36. Keefer WR, Whitney JW, Buesch DC (2007) Geology of the Yucca Mountain site area, southwestern Nevada. In: Stuckless JS, Levich RA (eds) The geology and climatology of Yucca Mountain and vicinity southern Nevada and California. Geological Society of America Memoir, Boulder, United States, 199:53–103Google Scholar
  37. Klostermann J 1992. Das Quartär der Niederrheinischen Bucht - Ablagerungen der letzten Eiszeit am Niederrhein. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, pp 200Google Scholar
  38. Kokelaar P (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–291. doi: 10.1007/BF01081756 CrossRefGoogle Scholar
  39. Le Maitre RW (2002) Igneous rocks: A classification and glossary of terms. Cambridge University Press, London, pp 236Google Scholar
  40. Lippolt HJ, Troesch M, Hess JC (1990) Excess argon and dating of Quaternary Eifel volcanism, IV. Common argon with higher and lower-than-atmospheric 40Ar/36Ar ratios in phonolitic rocks, East Eifel, FRG. Earth Planet Sci Lett 101:19–33. doi: 10.1016/0012-821X(90)90120-M
  41. Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204. doi: 10.1007/BF02597130 CrossRefGoogle Scholar
  42. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274. doi: 10.1007/BF01081755 CrossRefGoogle Scholar
  43. Lorenz V (2007) Syn- and posteruptive hazards of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:285–312. doi: 10.1016/j.jvolgeores.2006.02.015 CrossRefGoogle Scholar
  44. Lorenz V, Zimanowski B (2000) Volcanology of the Westeifel Maars. In: Neuffer FO, Lutz H [eds] Field Trip Guidebook, International Maar Conference Daun/Vulkaneifel. Mainzer Naturwissenschaftliches Archiv, Naturhistorisches Museum Mainz, 24: 30–52Google Scholar
  45. Lorenz V, Zimanowski B, Buettner R (2002) On the formation of deep-seated subterranean peperite-like magma-sediment mixtures. J Volcanol Geotherm Res 114:107–118. doi: 10.1016/S0377-0273(01)00293-1 CrossRefGoogle Scholar
  46. Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65. doi: 10.1016/j.earscirev.2006.09.002 CrossRefGoogle Scholar
  47. Magill C, Blong R, McAneney J (2006) VolcaNZ; a volcanic loss model for Auckland, New Zealand. J Volcanol Geotherm Res 149:329–345. doi: 10.1016/j.jvolgeores.2005.09.004 CrossRefGoogle Scholar
  48. Martin U, Németh K, Lorenz V, White JDL (2007) Maar-diatreme volcanism. J Volcanol Geotherm Res 159:1–3. doi: 10.1016/j.jvolgeores.2006.06.003 CrossRefGoogle Scholar
  49. McDonough WF, Sun S-s (1995) The composition of the earth. Chem Geol 120:223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  50. Mertes H, Schmincke H-U (1985) Mafic potassic lavas of the of the Quaternary West Eifel volcanic field. Contrib Mineral Petrol 89:330–345. doi: 10.1007/BF00381555 CrossRefGoogle Scholar
  51. Michon L, Merle O (2001) The evolution of the Massif Central rift: spatio-temporal distribution of volcanism. Bull Soc Geol Fr 172:201–211. doi: 10.2113/172.2.201 CrossRefGoogle Scholar
  52. Mitscherlich R (1863) Die vulkanischen Gesteine des Rodderberges in chemischer und geognostischer Beziehung. Z Dtsch Geol Ges pp 367–375Google Scholar
  53. Moore LG (1985) Structure and eruptive mechanisms at Surtsey volcano, Iceland. Geol Mag 122:649–661CrossRefGoogle Scholar
  54. Nemeth K (2001) Long-term erosion-rate calculation from the Waipiata volcanic field (New Zealand) based on erosion remnants of scoria cones, tuff rings and maars. Geomorphologie 2:137–152Google Scholar
  55. Nose CW (1789) Orographische Briefe über das Siebengebirge und die benachbarten zum Theil vulkanischen Gegenden beyder Ufer des Nieder-Rheins. Verlag Gebhard und Körber, Frankfurt am Mayn, Band 1, pp 278Google Scholar
  56. Peate DW, Mangini A, Leyk H-J, Calsteren Pv (2001) Pitfalls in 230Th- 238U dating of young Quaternary volcanic rocks; a case study from Fornicher Kopf (East Eifel volcanic field, Germany). Quat Sci Rev 20:1927–1933. doi: 10.1016/S0277-3791(01)00019-1 CrossRefGoogle Scholar
  57. Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: A new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosyst 6. doi: 10.1029/2005GC000932
  58. Pucher R (2003) Magnetische Aspekte zum Rodderberg-Vulkan (Bonn). Eiszeitalter Gegenwart 53:26–38Google Scholar
  59. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15. doi: 10.1007/BF01086757 CrossRefGoogle Scholar
  60. Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69:379–382. doi: 10.1016/0377-0273(95)00038-0 CrossRefGoogle Scholar
  61. Remy H (1960) Die zeitliche Stellung der Rodderbergtuffe im Rheinischen Löss. Decheniana 112:271–278Google Scholar
  62. Richter M (1942) Geologie des Rodderberges südlich von Bonn. Decheniana 101:1–24Google Scholar
  63. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14. doi: 10.1016/S0012-821X(01)00226-6 CrossRefGoogle Scholar
  64. Ross P-S, White JDL (2005) Mafic, large-volume, pyroclastic density current deposits from phreatomagmatic eruptions in the Ferrar large igneous Province, Antarctica. J Geo 113:627–649. doi: 10.1086/449324 CrossRefGoogle Scholar
  65. Schäfer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The Cenozoic Lower Rhine Basin - rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639. doi: 10.1007/s00531-005-0499-7 CrossRefGoogle Scholar
  66. Schmincke H-U (1982) Vulkane und ihre Wurzeln. Rhein-Westf Akad Wissensch, Westd Verlag Opladen. Vorträge N 315:35–78Google Scholar
  67. Schmincke H-U Bogaard Pvd, Freundt A (1990) Quaternary Eifel Volcanism. Excursion 1AI - Workshop on explosive volcanism. IAVCEI International Volcanological Congress, Mainz, Germany. pp 189Google Scholar
  68. Self S, Kienle J, Huot JP (1980) Ukinrek maars, Alaska. II. Deposits, formation of the 1977 maars. J Volcanol Geotherm Res 7:39–65. doi: 10.1016/0377-0273(80)90019-0 CrossRefGoogle Scholar
  69. Sohn YK, Park KH (2005) Composite tuff ring/cone complexes in Jeju Island, Korea; possible consequences of substrate collapse and vent migration. J Volcanol Geotherm Res 141:157–175. doi: 10.1016/j.jvolgeores.2004.10.003 CrossRefGoogle Scholar
  70. Steinmann G (1906) Über das Dilluvium am Rodderberge. Sitzungsbericht der Naturhistorischen Vereinigung der Preussischen Rheinlande und Westfalens, 21 –33Google Scholar
  71. Strunk H (1983) Pleistocene diapiric upturnings of lignites and clayey sediments as periglacial phenomena in Central Europe. In: Permafrost: 4th Intern. Conf., Proceedings, Nat. Academy Press, Washington, DC, pp 1200–1204Google Scholar
  72. Thiemer M (2003) Dreidimensionale Interpretation von Schlumberger-Geoelektrik-Messungen am Rodderberg-Vulkan bei Bonn. Universität zu Köln, Institut für Geophysik und Meteorologie, Cologne, p 124Google Scholar
  73. Thomae C (1835) Der vulkanische Roderberg bei Bonn. Geognostische Beschreibung seines Kraters und seiner Umgebung. Verlag Henry & Cohen, Bonn, p 58Google Scholar
  74. Ufnar D, Smith DP, White JDL (1995) Preservation potential of ultrabasic volcanic sand in an arid intracontinental setting; will the Hopi Buttes maar-diatreme field be preserved in the rock record? J Sed Res Sect A 65:99–104Google Scholar
  75. Ulrych J, Svobodova J, Balogh K (2002) The source of Cenozoic volcanism in the Ceske Stredohori Mts., Bohemian Massif. N J Miner Abh 177:133–162. doi: 10.1127/0077-7757/2002/0177-0133
  76. Valentine GA, Krier D, Perry FV, Heiken G (2005) Scoria cone construction mechanisms, Lathrop Wells Volcano, southern Nevada, USA. Geology 33:629–632. doi: 10.1130/G21459.1 CrossRefGoogle Scholar
  77. Vespermann D, Schmincke H-U (2000) Scoria cones and tuff rings. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, London, pp 683–694Google Scholar
  78. Wijbrans J, Nemeth K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204. doi: 10.1016/j.jvolgeores.2007.05.009 CrossRefGoogle Scholar
  79. Wohletz KH (1986) Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264. doi: 10.1007/BF01081754 CrossRefGoogle Scholar
  80. Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442:291–294. doi: 10.1038/nature04978 CrossRefGoogle Scholar
  81. Yirgu G, Ayele A, Ayalew D (2006) Recent seismovolcanic crisis in northern Afar, Ethiopia. EOS Transactions, 87(33):325, 329Google Scholar
  82. Zöller L (1989) Das Alter des Mosenberg-Vulkans in der Vulkaneifel. Die Eifel, pp 415–418Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Steinmann Institut für Geologie, Mineralogie und Paläontologie, Universität BonnBonnGermany
  2. 2.Geographisches Institut, Universität BonnBonnGermany
  3. 3.Lehrstuhl für Geomorphologie, Universität BayreuthBayreuthGermany

Personalised recommendations