Advertisement

International Journal of Earth Sciences

, Volume 98, Issue 7, pp 1581–1597 | Cite as

The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view

  • Gwenn Péron-PinvidicEmail author
  • Gianreto Manatschal
Original Paper

Abstract

In classical rift models, deformation is either uniformly distributed leading to symmetric fault bounded basins overlying stretched ductile lower crust (e.g. pure shear McKenzie model) or asymmetric and controlled by large scale detachment faulting (simple shear Wernicke model). In both cases rifting is considered as a mono-phase process and breakup is instantaneous resulting in the juxtaposition of continental and oceanic crust. The contact between these two types of crusts is often assumed to be sharp and marked by a first magnetic anomaly; and breakup is considered to be recorded as a major, basin wide unconformity, also referred to as breakup unconformity. These classical models, are currently challenged by new data from deep rifted margins that ask for a revision of these concepts. In this paper, we review the pertinent observations made along the Iberia-Newfoundland conjugate margins, which bear the most complete data set available from deep magma-poor margins. We reevaluate and discuss the polyphase nature of continental rifting, discuss the nature and significance of the different margin domains and show how they document extreme crustal thinning, retardation of subsidence and a complex transition into seafloor spreading. Although our study is limited to the Iberia-Newfoundland margins, comparisons with other margins suggest that the described evolution is probably more common and applicable for a large number of rifted margins. These new results have major implications for plate kinematic reconstructions and invite to rethink the terminology, the processes, and the concepts that have been used to describe continental rifting and breakup of the lithosphere.

Keywords

Continental margin Extensional tectonics Rifting Continental breakup Seafloor spreading 

Notes

Acknowledgments

This manuscript benefited from the thoughtful and constructive reviews of P. T. Osmundsen and an anonymous reviewer, and from discussions with G. Karner, C. Johnson, P. Unternehr, L. Lavier, O. Müntener, D. J. Shillington, T. Minshull, B. Tucholke and many others.

Supplementary material

531_2008_337_MOESM1_ESM.jpg (6.4 mb)
MOESM1 (JPG 6599 kb).

References

  1. Beslier MO, Cornen G, Girardeau J (1996) Tectono-metamorphic evolution of peridotites from the ocean/continent of the Iberia Abyssal Plain margin. Proc Ocean Drill Program Sci Results 149:397–412Google Scholar
  2. Boillot G, Grimaud S, Mauffret A, Mougenot D, Kornprobst J, Mergoil-Daniel J et al (1980) Ocean-continent boundary off the Iberia margin: a serpentinite diapir west of the Galicia Bank. Earth Planet Sci Lett 48:23–34. doi: 10.1016/0012-821X(80)90166-1 CrossRefGoogle Scholar
  3. Boillot G, Recq M and Scientific Party ODP Leg 103 (1987) Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin, Spain). Tectonophysics 132:335–342. doi: 10.1016/0040-1951(87)90352-0
  4. Buck R (1991) Modes of continental lithospheric extension. J Geophys Res 96-B12:20161–20178CrossRefGoogle Scholar
  5. Chian D, Louden K, Minshull TA, Whitmarsh RB (1999) Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: Ocean Drilling Program (Legs 149 and 173) transect. J Geophys Res 104-B4:7443–7462CrossRefGoogle Scholar
  6. Comas M, Sanchez-Gomez M, Cornen G, De Kaenel E (1996) Serpentinized peridotite breccia and olitostrome on basement highs of the Iberia Abyssal Plain: implications for tectonic margin evolution. Proc Ocean Drill Program Sci Results 149:577–591Google Scholar
  7. Contrucci I, Matias L, Moulin M, Géli L, Klingelhoefer F, Nouzé H et al (2004) Deep structure of the west African continental margin (Congo, Zaïre, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophys J Int 158:529–553. doi: 10.1111/j.1365-246X.2004.02303.x CrossRefGoogle Scholar
  8. Dean SM, Minshull TA, Whitmarsh RB, Louden KE (2000) Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: the IAM-9 transect at 40°20’N. J Geophys Res 105-B3:5859–5885CrossRefGoogle Scholar
  9. Funck T, Jackson HR, Louden KE, Dehler SA, Wu Y (2004) Crustal structure of the northern Nova Scotia rifted continental margin (eastern Canada). J Geophys Res 109:B09102. doi: 10.1029/2004JB003008 CrossRefGoogle Scholar
  10. Hart SR, Blusztajn J (2006) Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin. Chem Geol 235:222–237. doi: 10.1016/j.chemgeo.2006.07.001 CrossRefGoogle Scholar
  11. Jagoutz O, Müntener O, Manatschal G, Rubatto D, Péron-Pinvidic G, Turrin DB et al (2007) The rift-to-drift transition in the North Atlantic: A stuttering start of the MORB machine? Geology 35(12):1087–1090. doi: 10.1130/G23613A.1 CrossRefGoogle Scholar
  12. Karner GD, Driscoll NW (2000) Style, timing and distribution of tectonic deformation across the Exmouth Plateau, northwest Australia, determined from stratal architecture and quantitative basin modelling. Geol Soc Spec Publ 164:271–311CrossRefGoogle Scholar
  13. Krawczyk CM, Reston TJ, Beslier MO, Boillot G (1996) Evidence for detachment tectonics on the Iberia Abyssal Plain rifted margin. Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proc Ocean Drill Program Sci Results 149:603–615Google Scholar
  14. Lau HKW, Louden KE, Funck T, Tucholke BE, Holbrook WS, Hopper JR et al (2006) Crustal structure across the Grand Banks-Newfoundland Basin Continental margin—I. Results from a seismic refraction profile. Geophys J Int 167:127–156. doi: 10.1111/j.1365-246X.2006.02988.x CrossRefGoogle Scholar
  15. Lavier L, Buck WR, Poliakov ANB (1999) Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27(12):1127–1130. doi:10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2CrossRefGoogle Scholar
  16. Lavier L, Manatschal G (2006) A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440:324–328. doi: 10.1038/nature04608 CrossRefGoogle Scholar
  17. Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic model. Geology 15:622–625. doi:10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2CrossRefGoogle Scholar
  18. Le Pichon X, Sibuet JC (1981) Passive margins: a model of formation. J Geophys Res 86(B5):3708–3720. doi: 10.1029/JB086iB05p03708 CrossRefGoogle Scholar
  19. Lister GS, Etheridge MA, Symonds PA (1986) Detachment faulting and the evolution of passive continental margins. Geology 14:246–250. doi:10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2CrossRefGoogle Scholar
  20. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32. doi: 10.1016/0012-821X(78)90071-7 CrossRefGoogle Scholar
  21. Manatschal G, Froitzheim N, Rubenach M, Turrin BD (2001) In: Wilson RCL et al (eds) The role of detachment faulting in the formation of an ocean-continent transition: insights from the Iberia Abyssal Plain, in nonvolcanic rifting of continental margins: a comparison of evidence from land and sea. Geological Society, London, Special Publications, 187:405–428Google Scholar
  22. Manatschal G (2004) New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci 93:432–466. doi: 10.1007/s00531-004-0394-7 CrossRefGoogle Scholar
  23. Moulin M, Aslanian D, Olivet JL, Contrucci I, Matias L, Géli L et al (2005) Geological constraints on the evolution of the Angolan margin based on reflection and rafraction seismic data (ZaïAngo project). Geophys J Int 162:793–810. doi: 10.1111/j.1365-246X.2005.02668.x CrossRefGoogle Scholar
  24. Müntener O, Manatschal G (2006) High degrees of melt extraction recorded by spinel harzburgite of the Newfoundland margin: The role of inheritance and consequences for the evolution of the southern North Atlantic. Earth Planet Sci Lett 252:437–452. doi: 10.1016/j.epsl.2006.10.009 CrossRefGoogle Scholar
  25. Müntener O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth Planet Sci Lett 221:293–308. doi: 10.1016/S0012-821X(04)00073-1 CrossRefGoogle Scholar
  26. Pickup SLB, Whitmarsh RB, Fowler CMR, Reston TJ (1996) Insight into the nature of the ocean-continent transition off West Iberia from a deep multichanel seismic reflection profile. Geology 24:1079–1082. doi:10.1130/0091-7613(1996)024<1079:IITNOT>2.3.CO;2CrossRefGoogle Scholar
  27. Pérez-Gussinyé M, Reston TJ, Morgan JP (2001) Serpentinization and magmatism during extension at non-volcanic margins: the effect of initial lithospheric structure. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-volcanic rifting of continental margins: a comparison of evidence from land and sea, Geological Society, London, Special Publications, 187:551–576Google Scholar
  28. Pérez-Gussinyé M, Morgan JP, Reston Ranero CR (2006) The rift to drift transition at non-volcanic margins: Insighths from numerical modeling. Earth Planet Sci Lett 244:458–473. doi: 10.1016/j.epsl.2006.01.059 CrossRefGoogle Scholar
  29. Péron-Pinvidic G, Manatschal G, Minshull TA, Dean S (2007) Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: evidence for a complex breakup history. Tectonics 26. doi: 10.1029/2006TC001970
  30. Reston T (2007) Extension discrepancy at North Atlantic nonvolcanic rifted margins: depth-dependent stretching or unrecognized faulting? Geology 35–4:367–370CrossRefGoogle Scholar
  31. Russell SM, Whitmarsh RB (2003) Magmatism at the west Iberia non-volcanic rifted continental margin: Evidence from analyses of magnetic anomalies. Geophys J Int 154:706–730. doi: 10.1046/j.1365-246X.2003.01999.x CrossRefGoogle Scholar
  32. Sibuet JC, Srivastava S, Manatschal G (2007) Exhumed mantle forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. J Geophys Res 112:B06105. doi: 10.1029/2005JB003856
  33. Shillington DJ, Holbrook WS, Avendonk HV, Tucholke BE, Hopper J, Louden K, Larsen HC, Nunes GT, ODP Leg 210 Scientific Party (2006) Evidence for asymetric nonvolcanic rifting and slow incipient seafloor spreading from seismic reflection data on the Newfoundland margin. J Geophys Res 111:B09402. doi: 10.1029/2005JB003981
  34. Shillington DJ, Holbrook WS, Tucholke BE, Hopper JR, Louden KE, Larsen HC, et al (2004) Data report: Marine geophysical data on the Newfoundland nonvolcanic rifted margin around SCREECH Transect 2. Proc Ocean Drill Program, Initial Report, p 210Google Scholar
  35. Shipboard Scientific Party (1987) Introduction, objectives, and principal results: Ocean Drilling Program Leg103, West Galicia margin. In: Boillot G, Winterer EL, Meyer AW et al (eds) Proc Ocean Drill Program Init Rep 103:3–17Google Scholar
  36. Skelton ADL, Valley JW (2000) The relative timing of serpentinization and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Planet Sci Lett 178:327–338. doi: 10.1016/S0012-821X(00)00087-X CrossRefGoogle Scholar
  37. Tucholke BE, Sibuet JC (2007) Leg 210 synthesis: tectonic, magmatic, and sedimentary evolution of the Newfoundland-Iberia rift, vol 210. In: Tucholke BE, Sibuet J-C, Klaus A (eds) Proc Ocean Drill Program Sci ResultsGoogle Scholar
  38. Tucholke BE, Sawyer DS, Sibuet J (2007) Breakup of the Newfoundland–Iberia rift. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modelling continental lithosphere extension and breakup, vol 282. Geol Soc Spec Publ, pp 9–42Google Scholar
  39. Van Avendonk HJA, Holbrook WS, Nunes GT, Shillington DJ, Tucholke BE, Louden KE, et al (2006) Seismic velocity structure of the rifted margin of the eastern Grand Banks of Newfoundland, Canada. J Geophys Res 111:B11404. doi: 10.1029/2005JB004156
  40. Van Avendonk HJA, Lavier LL, Manatschal G, Shillington DJ (2008) Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics (in press)Google Scholar
  41. Wernicke B (1981) Low-angle normal faults in the Basin and Range Province: nappe tectonics in an extending orogen. Nature 291:645–648. doi: 10.1038/291645a0 CrossRefGoogle Scholar
  42. Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22:108–125CrossRefGoogle Scholar
  43. Whitmarsh RB, Miles PR, Mauffret A (1990) The ocean-continent boundary off the western continental margin of Iberia—I. Crustal structure at 40°30′N. Geophys J Int 103:509–531. doi: 10.1111/j.1365-246X.1990.tb01788.x CrossRefGoogle Scholar
  44. Whitmarsh RB, Pinheiro LM, Miles PR, Recq M, Sibuet JC (1993) Thin crust at the western Iberia ocean-continent transition and ophiolites. Tectonics 12–5:1230–1239. doi: 10.1029/93TC00059 CrossRefGoogle Scholar
  45. Whitmarsh RB, Dean SM, Minshull TA, Tompkins M (2000) Tectonic implications of exposure of lower continental crust beneath the Iberia Abyssal Plain, Northeast Atlantic Ocean: geophysical evidence. Tectonics 19–5:919–942CrossRefGoogle Scholar
  46. Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413:150–154. doi: 10.1038/35093085 CrossRefGoogle Scholar
  47. Wilson RCL, Manatschal G, Wise S (2001) Rifting along non-volcanic passive margins: stratigraphic and seismic evidence from the Mesozoic successions of the Alps and western Iberia. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-volcanic rifting of continental margins: a comparison of evidence from land and sea Geol Soc Spec Publ 187:429–452Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.CGS-EOSTStrasbourg CedexFrance

Personalised recommendations