Structure and metamorphism of the Gondwanan basement in the Bariloche region (North Patagonian Argentine Andes)

  • Joaquín García-SansegundoEmail author
  • P. Farias
  • G. Gallastegui
  • R. E. Giacosa
  • N. Heredia
Review Article


In the Bariloche region, the Gondwanan basement consists of metamorphic and deformed igneous rocks intruded by Mesozoic and Tertiary granitoids. Metasediments and amphibolites have been affected by three main deformation events (D1, D2 and D3). D1 (S1 foliation) is well shown preserved in the microlithons of the S2 regional foliation and in albite and garnet porphyroblasts. Both foliations have been folded by upright open folds with associated crenulation (S3) locally developed in the D3 folds hinge zones. An early-stage (syn-D1) subduction episode can be invoked based on evidence of high pressure (HP) metamorphism in schists and amphibolites as well as on the presence of pre-collisional I-type granitoids. D2–D3 developed under regional intermediate pressure–low pressure (IP–LP) metamorphic conditions. High temperature (HT) conditions were reached, as deduced from regional migmatization and the intrusion of syn- to late-orogenic S-type granitoids. The transition from HP to IP metamorphic conditions could be associated with the emplacement of NE directed crustal-scale thrusts during D2.


Gondwanan Orogen Patagonian Andes Structure Metamorphism 



We would like to thank M. A. S. Basei, W. von Gosen, F. Hervé, J. I. Gil-Ibarguchi, A. Marcos, R.J. Pankhurst, V. Ramos, J. Gallastegui and H. Stoll for their suggestions and comments. We especially appreciate the participation of A. Cuesta in the elaboration of this paper. Financial support was provided by DGCYT (General Direction of Science and Technology of the Spain Ministry of Education and Science); project BTE2002-04316-CO. This is a contribution to UNESCO/IUGS IGCP-471. This work is supported by the Consolider-Ingenio 2010 Programme, under project CSD2006-0041, “Topo-Iberia”.


  1. Arenas R, Rubio Pascual FJ, Díaz García F, Martínez Catalán JR (1995) High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Órdenes Complex, NW Iberian Massif, Spain): evidence of subduction and syncollisional decompression. J Metamorph Geol 13:141–164CrossRefGoogle Scholar
  2. Basei MAS, Brito Neves BB, Varela R, Teixeira W, Siga O Jr, Sato AM, Cingolani CA (2002) Isotopic dating on the crystalline basement rocks of the Bariloche Region, Rio Negro, Argentina. II South American Symposium on Isotope Geology, Actas book pp 15–18Google Scholar
  3. Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks, 7th edn. Springer, Berlin, pp 1–341Google Scholar
  4. Busquets P, Colombo F, Heredia N, Solé de Porta N, Rodríguez Fernández LR, Álvarez Marrón J (2005) Age and tectonostratigraphic significance of the Upper carboniferous series in the basement of the Andean Frontal Cordillera: geodynamic implications. Tectonophysics 399:181–194CrossRefGoogle Scholar
  5. Cerredo ME, López de Luchi MG (1998) Mamil Choique Granitoids, southwestern North Patagonian Massif, Argentina: magmatism and metamorphism associated with a polyphasic evolution. J South Am Earth Sci 11:499–515CrossRefGoogle Scholar
  6. Chernicoff CJ, Zappettini EO (2004) Geophysical evidence for terrane boundaries in South-Central Argentina. Gondwana Res 7:1105–1116CrossRefGoogle Scholar
  7. Dalla Salda LH, Cingolani C, Varela R (1991) El basamento cristalino de la región nordpatagónica de los lagos Gutiérrez, Mascardi, y Guillelmo, Provincia de Río Negro. Rev Asociación Geológica Argentina 46(3–4):263–276Google Scholar
  8. Dalla Salda LH, Varela R, Cingolani C, Aragón E (1994) The Río Chico Paleozoic Crystalline Complex and the evolution of Northern Patagonian. J South Am Earth Sci 7:377–386CrossRefGoogle Scholar
  9. Debon F, Le Fort P (1988) A cationic classification of common plutonic rocks and their magmatic association: principles, method, application. Bulletin de Minéralogie 111:493–510Google Scholar
  10. Giacosa R, Heredia N (2004) Structure of the North Patagonian thick-skinned fold and thrust belt, Southern Central Andes, Argentina (41°–42°S). J South Am Earth Sci 18(1):61–72CrossRefGoogle Scholar
  11. Gleissner Ph, Glodny J, Franz G (2007) Rb–Sr isotopic dating of pseudomorphs after lawsonite in metabasalts from the Glockner nappe, Tauern Window, Eastern Alps. Eur J Mineral 19:723–734CrossRefGoogle Scholar
  12. González-Bonorino F (1944) Descripción geológica y petrográfica de la Hoja Geológica 41 b Río Foyel (Río Negro). Dirección Nacional Minería e Hidrogeología. Bol 56, Buenos AiresGoogle Scholar
  13. Gosen von W, Loske W (2004) Tectonic history of the Calcatapul Formation, Chubut province, Argentina, and the “Gastre fault system”. J South Am Earth Sci 18(1):73–88CrossRefGoogle Scholar
  14. Heredia N, Rodríguez Fernández LR, Gallastegui G, Busquets P, Colombo F (2002) Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30°00′ to 31°30′S latitude). In: Ramos, V, McNulty, B (eds). Flat Subduction in the Andes. J South Am Earth Sci, Special Issue 15(1):79–99Google Scholar
  15. Heredia N, Alonso JL, Busquets P, Colombo F, Farias P, Gallastegui G, Gallastegui J, García-Sansegundo J, Giacosa RE, Montes M, Nozal F, Ramos V, Rodríguez Fernández LR (2006) El Orógeno Gondwánico entre los Andes Centrales (30°S) y la Península Antártica (65°S): Evolución y marco geotectónico. XI Congreso Geológico Chileno. Actas Geodinámica Andina 2:251–254Google Scholar
  16. Hervé F (1992) Estado actual del conocimiento del metamorfismo y plutonismo de la Península Antártica al norte de los 65°S y el archipiélago de las Shetlands del Sur: revisión y problemas. In: López-Martínez, J (ed) Geología de la Antartida Occidental. VIII Congreso Latinoamericano de Geología, Salamanca, España, Symposium 3:19–31Google Scholar
  17. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  18. Jamieson RA, O’Beirne-Ryan AM (1991) Decompression-induced growth of albite porphyroblasts. Fleur de Lus Supergroup, western Newfoundland. J Metamorph Geol 9:433–439CrossRefGoogle Scholar
  19. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  20. Linares E, Haller MJ, Ostera HA, Cagnoni MC, Galante G (1997) Radiometric ages of the crystalline basement of the Río Chico region, Ñorquinco department, Río Negro province, Argentina. South American symposium on isotope geology, Extended abstracts, pp 170–173Google Scholar
  21. López de Luchi MG (1994) Geología de las unidades plutónicas del macizo Norpatagónico en la zona de Río Chico-Mamil Choique, provincia de Río Negro, República Argentina. 7th Congreso Geológico Chileno, Actas 1:91–95Google Scholar
  22. López de Luchi MG, Cerredo ME (1997) Paleozoic Basement of the Southern Corner of the North Patagonian Massif: an overview. 8th Congreso Geológico Chileno, Actas, pp 1674–1678Google Scholar
  23. Mpodozis C, Forsythe R (1983) Stratigraphy and geochemistry of accreted fragments of the ancestral Pacific floor in southern South America. Paleogeogr Paleoclimatol Paleocol 41:103–124CrossRefGoogle Scholar
  24. Mpodozis C, Ramos V (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas Pinochet MT, Reinemud JA (eds) Geology of the Andes and its relation to Hydrocarbon and Mineral Resources, Circumpacific Council for Energy and Mineral Resources. Eart Sci Series 11:59–90Google Scholar
  25. Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 7:235–257CrossRefGoogle Scholar
  26. Passchier CW, Trouw RAJ (1996) Microtectonics. Springer, Berlin, pp 1–304Google Scholar
  27. Ramos V (1984) Patagonia: ¿un continente paleozoico a la deriva? IX Congreso Geológico Argentino, Actas 2:311–325Google Scholar
  28. Ramos V (1988) Tectonic of the Central Andes 30° to 33°S latitude. In: Clark S, Burchfiel D (eds) Processes in continental lithospheric deformation. Geol Soc Am, Special Paper 258: 31–54Google Scholar
  29. Ramos V (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22(3):183–190Google Scholar
  30. Rapalini AE, Hervé F, Ramos V, Singe SE (2001) Evidences for a very large counterclockwise rotation of the Madre de Dios Archipielago, southern Chile. Earth Planet Sci Lett 184:471–487CrossRefGoogle Scholar
  31. Ravazzoli I, Sesana F (1977) Descripción Geológica de la Hoja 41c, Río Chico, Provincia del Chubut. Servicio Geológico Nacional. Boletín 148, Buenos Aires, ArgentinaGoogle Scholar
  32. Rebolledo S, Charrier R (1994) Evolución del basamento paleozoico en el área de Punta Claditas, Región de Coquimbo, Chile (31°–32°S). Rev Geol Chile 21(1):55–69Google Scholar
  33. Rubio Pascual FJ, Arenas R, Díaz García F, Martínez Catalán JR, Abati J (2002) Contrasting high-pressure metabasites from the Santiago unit (Órdenes Complex, northwestern Iberian Massif, Spain). In: Martínez Catalán JR, Hatcher RD, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement, Boulder, Colorado. Geol Soc Am, Special Paper 364:105–124Google Scholar
  34. Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42–52°S). Rev Geol Chile 29(2):255–271CrossRefGoogle Scholar
  35. Turner JC (1965) Estratigrafía de Aluminé y adyacencias, provincia de Neuquén. Rev Asociación Geológica Argentina 20:153–184Google Scholar
  36. Varela R, Basei MAS, Brito Neves BB, Sato AM, Teixeira W, Cingolani CA, Siga Jr O (2002) Isotopic study of igneous and metamorphic rocks of Comallo-Paso Flores, Rio Negro, Argentina. II South American symposium on isotope geology, Actas pp 148–151Google Scholar
  37. Varela R, Basei MAS, Cingolani CA, Siga O Jr, Passareli CR (2005) El basamento cristalino de los Andes norpatagónicos en Argentina: geocronología e interpretación tectónica. Rev Geol Chile 32:167–182CrossRefGoogle Scholar
  38. Volkheimer W (1964) Estratigrafía de la zona extrandina del departamento de Cushamen (Chubut) entre los paralelos 42° y 42° 30′ y los meridianos 70° y 71°. Rev Asociación Geológica Argentina 19(2):85–107Google Scholar
  39. Willner AP, Glodny J, Gerya TV, Godoy E, Massonne HJ (2004) A counterclockwise PTt path of high-pressure/low-temperature rocks from the Coastal Cordillera accretionary complex of south-central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joaquín García-Sansegundo
    • 1
    Email author
  • P. Farias
    • 1
  • G. Gallastegui
    • 2
  • R. E. Giacosa
    • 3
  • N. Heredia
    • 2
  1. 1.Departamento de GeologíaUniversidad de OviedoOviedoSpain
  2. 2.Instituto Geológico y Minero de EspañaOviedoSpain
  3. 3.Servicio Geológico y Minero Argentino, Delegación ComahueGeneral RocaArgentina

Personalised recommendations