Life in the sublittoral zone of long-lived Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation, Hungary

  • István CziczerEmail author
  • Imre Magyar
  • Radovan Pipík
  • Madelaine Böhme
  • Stjepan Ćorić
  • Koraljka Bakrač
  • Mária Sütő-Szentai
  • Miklós Lantos
  • Edit Babinszki
  • Pál Müller
Original Paper


Life and depositional environments in the sublittoral zone of Lake Pannon, a large, brackish Paratethyan lake from the Late Miocene, were reconstructed from fossils and facies of the Szák Formation. This formation is exposed in several, roughly coeval (9.4–8.9 Ma) outcrops, located along strike of the paleo-shelf-break in northwestern Hungary. The silty argillaceous marl of the formation was deposited below storm wave base, at 20–30 to 80–90 m water depth. The abundance of benthic organisms indicates that the bottom water was usually well oxygenated. Interstitial dysoxia, however, may have occurred immediately below the sediment–water interface, as evidenced by occasional preservation of trace fossils such as Diplocraterion. The fauna comprised endemic mollusks, including brackish cockles of the subfamily Lymnocardiinae, dreissenid mussels (Congeria), and highly adapted, uniquely large-sized deep-water pulmonate snails (planorbids and lymnaeids). Ostracods were dominated by endemic species and, in some cases, endemic genera of candonids, leptocytherids, cypridids, and loxoconchids. Fish remnants include a sciaenid otolith and the oldest skeletal occurrence of Perca in Europe. The phytoplankton comprised exclusively endemic coccolithophorids, mostly endemic dinoflagellates (prevailingly Spiniferites), and cosmopolitan green algae. The Late Miocene fauna and flora of Lake Pannon were in many ways similar to the modern Caspian biota, and in particular cases can be regarded as its precursor.


Lake Pannon Caspian Sea Long-lived lakes Paleoecology Depth tolerance 



The stable isotope measurements of mollusk shells have been carried out by Attila Demény, Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest. A part of this study was supported by the APVV agency (project APVT-51-045202) and by the VEGA agency (project No. 1/3053/06). I. Cziczer thanks Miklós Szónoky and Pál Sümegi for supporting his research through the Geological and Paleontological Department, University of Szeged. Several students, including Sándor Gulyás, Janina Horváth, Zsolt Veres and Áron Vavra assisted in the field work. The two reviewers, Frank Wesselingh (Leiden) and Mathias Harzhauser (Vienna) are thanked for their useful comments on the earlier version of the paper.


  1. Athersuch J, Horne DJ, Whittaker JE (1989) Marine and brackish ostracods (Superfamilies Cypridacea and Cytheracea). E.J. Brill, Leiden, pp 1–343Google Scholar
  2. Babinszki E, Sztanó O, Magyari Á (2003) Episodic deposition in the Kálla bay of Lake Pannon: sedimentology and trace fossils of Kálla Sand. Földtani Közlöny 133:363–382Google Scholar
  3. Babinszki E, Márton E, Márton P, Kiss LF (2007) Widespread occurrence of greigite in the sediments of Lake Pannon: Implications for environment and magnetostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 252:626–636CrossRefGoogle Scholar
  4. Bakrač K (2005) Palinološka karakterizacija naslaga srednjeg miocena jugozapadnog dijela Panonskog bazena (Palynology of the Middle and Upper Miocene deposits from the south-western parts of the Pannonian Basin). Ph.D. Thesis, University of Zagreb, Zagreb, pp 1–173Google Scholar
  5. Bauch G (1954) Die einheimischen Süßwasserfische. Neumann Verlag, Berlin, pp 1–200Google Scholar
  6. Bernor RL, Kordos L, Rook L, Agusti J, Andrews P, Armour-Chelu M, Begun DR, Cameron DW, Damuth J, Daxner-Höck G, de Bonis L, Fejfar O, Fessaha N, Fortelius M, Franzen J, Gasparik M, Gentry A, Heissig K, Hernyak G, Kaiser T, Koufos GD, Krolopp E, Jánossy D, Llenas M, Mészáros L, Müller P, Renne P, Roček Z, Sen S, Scott R, Szyndlar Z, Topál Gy, Ungar PS, Utescher T, van Dam J, Werdelin L, Ziegler R (2003) Recent advances on multidisciplinary research at Rudabánya, Late Miocene (MN9), Hungary: a compendium. Palaeontogr Ital 89:3–36Google Scholar
  7. Boss KJ (1978) On the evolution of gastropods in ancient lakes. In: Fretter V, Peake J (eds) Pulmonates, vol 2A, Systematics, Evolution and Ecology. Academic Press, New York, pp 385–428Google Scholar
  8. Böhme M (2003) Miocene climatic optimum: evidence from lower vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401CrossRefGoogle Scholar
  9. Böhme M, Ilg A, Ossig A, Küchenhoff H (2006) New method to estimate paleoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology 34:425–428CrossRefGoogle Scholar
  10. Boomer I, von Grafenstein U, Guichard F, Bieda S (2005) Modern and Holocene sublittoral ostracod assemblages (Crustacea) from the Caspian Sea: a unique brackish, deep-water environment. Palaeogeogr Palaeoclimatol Palaeoecol 225:173–186CrossRefGoogle Scholar
  11. Bronshtein ZS (1947) Fauna SSSR, Rakoobraznye, Tom II, Vyp. 1 Ostracoda Presnykh Vod. Academy of Sciences of the USSR Publishers, Moscow. (English translation 1988: Freshwater Ostracoda—Fauna of the USSR: Crustaceans, vol. II, No.1. AA Balkema, Rotterdam, pp 1–455)Google Scholar
  12. Bruch A, Utescher T, Mosbrugger V, Gabrielyan I, Ivanov DA (2006) Late Miocene climate in the circum-Alpine realm—a quantitative analysis of terrestrial palaeofloras. Palaeogeogr Palaeoclimatol Palaeoecol 238:270–280CrossRefGoogle Scholar
  13. Brzobohatý R, Pană I (1985) Die Fischfauna des Pannonien. In: Papp A, Jámbor Á, Steininger FF (eds) Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys 7, Pannonien. Akadémiai Kiadó, Budapest, pp 426–439Google Scholar
  14. Carbonel P, Colin JP, Danielopol DI, Löffler H, Neustrueva I (1988) Paleoecology of limnic ostracodes: a review of some major topics. Palaeogeogr Palaeoclimatol Palaeoecol Spec Issue Aspects Freshw Paleoecol Biogeogr 62:413–461Google Scholar
  15. Carbonnel G (1978) La zone à Loxoconcha djafarovi Schneider (Ostracoda, Miocène supérieur) ou le Messinien de la vallée du Rhône. Revue de Micropaléontologie 21:106–118Google Scholar
  16. Ćorić S (2006) Middle/Upper Miocene (Sarmatian/Pannonian) endemical calcareous nannoplankton from the Central Paratethys. 11th International Nannoplankton Association Conference, Lincoln, Nebraska, Program with abstracts, pp 32–34Google Scholar
  17. Cziczer I, Magyar I (2006) Paleoecological and biostratigraphic study of Pannonian molluscs from Tata, NW Hungary. In: Hum L, Gulyás S, Sümegi P (eds) Environmental historical studies from the Late Tertiary and Quaternary of Hungary. Department of Geology and Paleontology, University of Szeged, Szeged, pp 45–55Google Scholar
  18. Danielopol DL, Buttinger R, Pipík R, Olteanu R, Knoblechner J (2007) Miocene “Hungarocypris” species (Ostracoda Cyprididae) of Lake Pannon are not related to the Recent species Hungarocypris madaraszi (Örley). European Ostracodologist´s Meeting VI—Abstract Volume, Frankfurt am Main: 25Google Scholar
  19. Davis GM (1982) Historical and ecological factors in the evolution, adaptive radiation, and biogeography of freshwater molluscs. Am Zool 22:375–395Google Scholar
  20. Dumont HJ (1998) The Caspian Lake: History, biota, structure, and function. Limnol Oceanogr 43:44–52Google Scholar
  21. Ekdale AA, Lewis DW (1991) Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 81:253–279CrossRefGoogle Scholar
  22. Esu D (2007) Latest Messinian “Lago-Mare” Lymnocardiinae from Italy: close relations with the Pontian fauna from the Dacic Basin. Geobios 40:291–302CrossRefGoogle Scholar
  23. Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A, Vislobokova I, Zhang Z (2006) Late Miocene and pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr Palaeoclimatol Palaeoecol 238:219–227CrossRefGoogle Scholar
  24. Frey RW, Goldring R (1992) Marine event beds and recolonization surface as revealed by trace fossil analysis. Geol Mag 129:325–335CrossRefGoogle Scholar
  25. Fürsich FT (1974) On Diplocraterion Torrell 1870 and the significance of morphological features in vertical, spreite-bearing, U-shaped trace fossils. J Paleontol 48:952–962Google Scholar
  26. Fürsich FT (1998) Environmental distribution of trace fossils in the Jurassic of Kachchh (western India). Facies 39:243–272CrossRefGoogle Scholar
  27. Gaillard C, Racheboeuf PR (2006) Trace fossils from nearshore to offshore environments: Lower Devonian of Bolivia. J Paleont 80:1205–1226CrossRefGoogle Scholar
  28. Gaschott O (1928) Einführung in die Systematik der Süßwasserfische Mitteleuropas.Die Stachelflosser. In: Handbuch der Binnenfischerei Mitteleuropas 3 (2). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 1–68Google Scholar
  29. Gaudant J (1997) L’ichthyofaune pliocene de Willershausen am Harz (Basse Saxe, Allemagne)—un reexamen. Stuttgarter Beitr Naturkunde B 257:1–51Google Scholar
  30. Geary DH, Magyar I, Müller P (2000) Ancient Lake Pannon and its Endemic Molluscan Fauna (Central Europe; Mio-Pliocene). In: Rossiter A, Kawanabe H (eds) Ancient lakes: biodiversity, ecology, and evolution. Adv Ecol Res 31:463–482, Academic Press, New YorkGoogle Scholar
  31. Gliozzi E, Grossi F (2004) Ostracode assemblages and palaeoenvironmental evolution of the latest Messinian lago-mare event at Perticara (Montefeltro, northern Apennines, Italy). Revista Espanola de Micropaleontología 36:157–169Google Scholar
  32. Gofman EA (1966) Ekologia sovremennykh i novokaspiiskikh ostrakod Kaspiiskogo moria (Ecology of the living and new caspian ostracodes of the Caspian Sea). Nauka, Moscow, pp 1–183Google Scholar
  33. Harzhauser M, Daxner-Höck G, Piller WE (2004) An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Aust J Earth Sci 95–96:6–19Google Scholar
  34. Harzhauser M, Mandic O (2004) The muddy bottom of Lake Pannon—a challenge for dreissenid settlement (Late Miocene; Bivalvia). Palaeogeogr Palaeoclimatol Palaeoecol 204:331–352CrossRefGoogle Scholar
  35. Harzhauser M, Latal C, Piller WE (2007) The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change. Palaeogeogr Palaeocimatol Palaeoecol 249:335–350CrossRefGoogle Scholar
  36. Heinberg C, Birkelund T (1984) Trace-fossil assemblages and basin evolution of the Vardekloft Formation (Middle Jurassic, Central East Greenland). J Paleontol 58:362–397Google Scholar
  37. Hertweck G (1970) The animal community of a muddy environment and the development of biofacies as effected by the life cycle of the characteristic species. In: Crimes TP, Harper JC (eds) Trace fossils. Seel House Press, Liverpool, pp 235–242Google Scholar
  38. Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian Basin. Tectonophysics 266:287–300CrossRefGoogle Scholar
  39. Horváth F, Tari G (1999) IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geol Soc Lond Spec Publ 156:195–213Google Scholar
  40. Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geol Soc Memoir 32:191–206Google Scholar
  41. Jámbor Á (1980) Pannonian in the Transdanubian Central Mountains. Ann Hung Geol Inst 52:1–259Google Scholar
  42. Jámbor Á (1987) Die Lebensspurenfauna der pannonischen (s.l.) Bildungen in Ungarn. Ann Hung Geol Inst 69:423–433Google Scholar
  43. Jerković L (1970) Noelaerhabdus nov. gen type d’une nouvelle familia de Coccolithophorides fossils: Noelaerhabdaceae du miocéne de Yugoslavie. Micropal C r Acad Sc Paris, Ser D 270:468–470Google Scholar
  44. Jerković L (1971) Noelaerhabdus bekei nov. sp. des coccolithophorides du pannonien de Belgrade. Bull Sci Sect A Yugosl 0758Google Scholar
  45. Jiménez-Moreno G (2006) Progressive substitution of a subtropical forest for a temperate one during the middle Miocene climate cooling in Central Europe according to palynological data from cores Tengelic-2 and Hidas-53 (Pannonian Basin, Hungary). Rev Palaeobot Palynol 142:1–14CrossRefGoogle Scholar
  46. Juhász Gy (1992) Pannonian (s.l.) lithostratigraphic units in the Great Hungarian Plain: distribution, facies and sedimentary environment. Földtani Közlöny 122:133–165Google Scholar
  47. Juhász Gy, Magyar I (1992) Review and correlation of the Late Neogene (Pannonian s.l.) lithofacies and mollusc biofacies in the Great Plain, eastern Hungary. Földtani Közlöny 122:167–194Google Scholar
  48. Korpás-Hódi M (1983) Palaeoecology and biostratigraphy of the Pannonian Mollusca fauna in the northern foreland of the Transdanubian Central Range. Ann Hung Geol Inst 66:1–163Google Scholar
  49. Kosarev AN, Yablonskaya EA (1994) The Caspian Sea. SPB Academic Publishing, The Hague, pp 1–259Google Scholar
  50. Krstić N, McKenzie KG (1991) Mediocytherideis Mandelstam, 1956: diagnosis and relationships. Ann Géol Péninsule Balkanique 55:175–205Google Scholar
  51. Krstić N, Stancheva N (1990) Ostracods of Eastern Serbia and Northern Bulgaria with notice on a Northern Turkey assemblage. In: Stevanović PM, Nevesskaya LA, Marinescu F, Sokać A, Jámbor Á (eds) Chronostratigraphie und Neostratotypen, Neogen der Westlichen (“Zentrale”) Paratethys 8, Pontien. Jazu and Sanu, Zagreb Beograd, pp 753–819Google Scholar
  52. Lennert J, Szónoky M, Gulyás S, Szuromi-Korecz A, Shatilova II, Sütő-Szentai M., Geary DH, Magyar I (1999) The Lake Pannon fossils of the Bátaszék brickyard. Acta Geol Hung 42:67–88Google Scholar
  53. Leszczynski S, Uchman A, Bromley RG (1996) Trace fossils indicating bottom aeration changes: Folusz Limestone, Oligocene, Outer Carpathians, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 121:79–87CrossRefGoogle Scholar
  54. Lourens LJ, Hilgen FJ, Shackleton NJ, Laskar J, Wilson D (2004) The Neogene Period. In: Gradstein F, Ogg J, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, Cambridge , pp 469–471Google Scholar
  55. Lueger JP (1978) Klimaentwicklung im Pannon und Pont des Wiener Beckens aufgrund von Landschneckenfaunen. Anzeiger der math-naturw Klasse der Österreichischen Akademie derWissenschaften 6:137–149Google Scholar
  56. Luljeva SA (Люльева CA) (1989) Н Новые Миоценовые и П Плиоценовые известковые наннофоссилии юга Украины. Доклады Академии наук Украинскои ССР, B 1:10–14Google Scholar
  57. Magyar I (1995) Late Miocene mollusc biostratigraphy in the eastern part of the Pannonian Basin (Tiszántúl, Hungary). Geol Carpathica 46:29–36Google Scholar
  58. Magyar I, Geary DH, Müller P (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 147:151–167CrossRefGoogle Scholar
  59. Magyar I, Müller PM, Sztanó O, Babinszki E, Lantos M (2006) Oxygen-related facies in Lake Pannon deposits (Upper Miocene) at Budapest-Köbánya. Facies 52:209–220CrossRefGoogle Scholar
  60. Magyar I, Lantos M, Ujszászi K, Kordos L (2007) Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian Basin System. Geol Carpathica 58:277–290Google Scholar
  61. Marret F, Leroy S, Chalié F, Gasse F (2004) New organic-walled dinoflagellate cysts from recent sediments of Central Asian seas. Rev Palaebotany Palynol 129:1–20CrossRefGoogle Scholar
  62. Marunţeanu M (1997) Pannonian nannoplankton zonation. International Symposium Geology in the Danube Gorges, pp 263–265Google Scholar
  63. Mason TR, Christie ADM (1986) Palaeoenvironmental significance of ichnogenus Diplocraterion Torell from the Permian Vryheid Formation of the Karoo supergruop, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 52:249–265CrossRefGoogle Scholar
  64. Mátyás J, Burns SJ, Müller P, Magyar I (1996) What can stable isotopes say about salinity? An example from the Late Miocene Pannonian Lake. Palaios 11:31–39CrossRefGoogle Scholar
  65. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  66. Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag, Heidelberg, pp 1–522Google Scholar
  67. Michel E (1994) Why snails radiate: a review of gastropod evolution in long-lived lakes, both recent and fossil. In: Martens K, Goddeeris B, Coulter G (eds) Speciation in ancient lakes. Arch Hydrobiol Beih Ergebn Limnol 44:285–317Google Scholar
  68. Morton J, Miller M (1968) The New Zealand sea shore. Collins, London, pp 1–638Google Scholar
  69. Mouthon J (1987) Contribution a la connaissance des Mollusques du lac Léman. Intérêt de l`étude des malacocénoses pour apprécier la qualité biologique des sédiments de ce plan d`eau. Rev Suisse Zool 94:729–740Google Scholar
  70. Müller P, Geary DH, Magyar I (1999) The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family-level taxonomy. Lethaia 32:47–60Google Scholar
  71. Nagy E (2005) Palynological evidence for Neogene climatic change in Hungary. Occas Pap Geol Inst Hung 205:1–120Google Scholar
  72. Nevesskaja LA, Paramonova NP, Popov SV (2001) History of Lymnocardiinae (Bivalvia, Cardiidae). Paleontol J 35(Suppl 3):S147–S217Google Scholar
  73. Olóriz F, Rodríguez-Tovar FJ (2000) Diplocraterion: a useful marker for sequence stratigraphy and correlation in the Kimmeridgian, Jurrasic (Prebetic zone, Betic Cordillera, southern Spain). Palaios 15:546–552Google Scholar
  74. Page LM, Burr BM (1991) A field guide of the freshwater fishes of North America and North Mexico. The Peterson Field Guide Series, Houghton Mifflin Company, Boston, pp 1–432Google Scholar
  75. Papp A, Jámbor Á, Steininger FF (eds) (1985) Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys 7, Pannonien. Akadémiai Kiadó, Budapest, pp 1–636Google Scholar
  76. Pervesler P, Uchman A (2004) Ichnofossils from the type area of the Grund Formation (Miocene, lower Badenian) in northern lower Austria (Molasse Basin). Geol Carpathica 55:103–110Google Scholar
  77. Piaget J (1914) Premieres recherches sur les Mollusques profonds du Lac de Neuchatel. Bull Soc Neuchatel Sci Nat 40:148–170Google Scholar
  78. Pipík R (1998) Salinity changes recorded by ostracoda assemblages found in Pannonian sediments in the western margin of the Danube Basin. Bull Centres Rech Exploration-production Elf-Aquitaine 20:167–177Google Scholar
  79. Pipík R (2001) Les Ostracodes d’un lac ancien et ses paléobiotopes au Miocène supérieur: le Bassin de Turiec (Slovaquie). Thèse, Université Claude-Bernard, Lyon I, pp 1–337Google Scholar
  80. Pipík R (2007) Phylogeny, palaeoecology, and invasion of non-marine waters by the late Miocene hemicytherid ostracod Tyrrhenocythere from Lake Pannon. Acta Palaeontol Pol 52:351–368Google Scholar
  81. Pipík R, Bodergat AM (2004) Euxinocythere (Ostracoda, Cytheridae, Leptocytherinae) du Miocène supérieur du Bassin de Turiec (Slovaquie): taxonomie et paléoécologie. Rev Micropaléontol 47:36–52CrossRefGoogle Scholar
  82. Pipík R, Fordinál K, Slamková M, Starek D, Chalupová B (2004) Annotated checklist of the Pannonian microflora, evertebrate and vertebrate community from Studienka, Vienna Basin. Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Geology 31–32:47–54Google Scholar
  83. Pogácsás Gy, Lakatos L, Révész I, Ujszászi K, Vakarcs G, Várkonyi L, Várnai P (1988) Seismic facies, electro facies and Neogene sequence chronology of the Pannonian Basin. Acta Geol Hung 31:175–207Google Scholar
  84. Pross J (2001) Paleo-oxygenation in Tertiary epeiric seas: evidence from dinoflagellate cysts. Palaeogeogr Palaeoclimatol Palaeoecol 166:369–381CrossRefGoogle Scholar
  85. Reichenbacher B (2000) Das brackisch-lakustrine Oligozän und Unter-Miozän im Mainzer Becken und Haunauer Becken: Fischfaunen, Paläoökologie, Biostratigraphie, Paläogeographie. Courier Forschungsinstitut Senckenberg 222:1–143Google Scholar
  86. Rhoads DC, Boyer LF (1982) The effects of marine benthos on physical properties of sediments: a successional perspective. In: McCall PL, Tevesz MJS (eds) Animal–sediment relations. The biogenic alteration of sediments. Topics Geobiol 2:3–52Google Scholar
  87. Ricketts RD, Johnson ThC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227CrossRefGoogle Scholar
  88. Ruiz F, González-Regaldo ML, Muńoz JM, Pendón JG, Rodríguez-Ramírez A, Cáceres L, Rodríguez Vidal J (2003) Population age structure techniques and ostracods: applications in coastal hydrodynamics and paleoenvironment analysis. Palaeogeogr Palaeoclimatol Palaeoecol 199:51–69CrossRefGoogle Scholar
  89. Sacchi M, Horváth F, Magyari O (1999) Role of unconformity-bounded units in the stratigraphy of the continental record: a case study from the Late Miocene of the western Pannonian Basin, Hungary. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geol Soc Lond Spec Publ 156:357–389Google Scholar
  90. Schornikov EI (1964) An experiment on the distinction of the Caspian elements of the Ostracod fauna in the Azov - Black Sea Basin. Zoologitcheskii Zhournal 43:1276–1293Google Scholar
  91. Schornikov EI (1966) Leptocythere (Crustacea, Ostracoda) in the Azov-Black Sea Basin. Zoologitcheskii Zhournal 45:32–49Google Scholar
  92. Schubert RJ (1912) Die Fischotolithen der ungarischen Tertiärablagerungen. Jahrbuch der königlichen ungarischen geologischen Reichsanstalt 20:115–139Google Scholar
  93. Schultz O (2004) Fish remains from the Lower Pannonian (Upper Miocene) of Mataschen, Styria (Austria). J Geol Paläontol 5:231–256Google Scholar
  94. Sitnikova TYa (1994) Recent views on the history and diversity of the Baikalian malacofauna. In: Martens K, Goddeeris B, Coulter G (eds) Speciation in ancient lakes. Arch Hydrobiol Beih Ergebn Limnol 44:319–326Google Scholar
  95. Sokać A (1990) Pontian ostracod fauna in the Pannonian Basin. In: Stevanović PM, Nevesskaya LA, Marinescu F, Sokać A, Jámbor Á (eds) Chronostratigraphie und Neostratotypen, Neogen der Westlichen (“Zentrale”) Paratethys 8, Pontien. Jazu and Sanu, Zagreb Beograd, pp 672–721Google Scholar
  96. Starek D, Pipík R (2007) Oxic and anoxic deposits of the Pannonian E (Late Miocene) from the Vienna Basin (sedimentological and micropaleontological description of sediments with Congeria subglobosa horizon. Scripta Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Geology 36:25–30Google Scholar
  97. Stevanović PM, Nevesskaya LA, Marinescu F, Sokać A, Jámbor Á (eds) (1990) Chronostratigraphie und Neostratotypen, Neogen der Westlichen (“Zentrale”) Paratethys 8, Pontien. Jazu and Sanu, Zagreb Beograd, pp 1–952Google Scholar
  98. Stover LE, Brinkhuis H, Damassa SP, de Verteuil L, Helby RJ, Monteil E, Partridge AD, Powell AJ, Riding JB, Smelror M, Williams GL (1996) Mesozoic-Tertiary dinoflagellates, acritarchs and prasinophytes. In: Jansonius J, McGregor DC (eds) Principles and applications 2. Am Assoc Stratigraphic Palynol Found, College Station, pp 641–750Google Scholar
  99. Sütő-Szentai M. (1991) Szervezvázú mikroplankton zónák Magyarország pannóniai rétegösszletében. Újabb adatok a zónációról és a dinoflagellaták evolúciójáról (Organic-walled microplancton zones of the Pannonian in Hungary. New data on the zonation and dinoflagellate evolution). Őslénytani Viták Discussiones Palaeontologicae 36–37:157–200Google Scholar
  100. Sütő-Szentai M (1988) Microplankton zones of organic sceleton in the Pannonian s. l. stratum complex and in the upper part of the Sarmatian strata. Acta Botanica Hung 34:339–356Google Scholar
  101. Taktakishvili IG (1967) Istoricheskoje razvitije semejstva Valencienniid. Mecniereba, Tbilisi, pp 1–194Google Scholar
  102. Taktakishvili IG (1987) Sistematika i filogenija pliotsenovikh kardiid Paratetisa. Mecniereba, Tbilisi, pp 1–248Google Scholar
  103. Tarasov AG (1996) Deep-water Caspian benthic fauna 1. Genesis and vertical zonation Zoologichesky Zhurnal 75:1763–1775Google Scholar
  104. Tarasov AG (1997) Deep-water Caspian benthic fauna 2. Biological diversity. Zoologichesky Zhurnal 76:5–15Google Scholar
  105. Tarasov AG, Chepalyga AL (1996) New data on the vertical distribution of Bivalvia in Caspian deep-water basins. Ruthenica 5:147–154Google Scholar
  106. Vakarcs G, Vail PR, Tari G, Pogácsás Gy, Mattick RE, Szabó A (1994) Third-order Middle Miocene-Early Pliocene depositonal sequences in the prograding delta complex of the Pannonian Basin. Tectonophysics 240:81–106CrossRefGoogle Scholar
  107. Van Dam JA (2006) Geographic and temporal patterns in the late Neogene (12-3 Ma) aridification of Europe: the use of small mammals as paleoprecipitation proxies. Palaeogeogr Palaeoclimatol Palaeoecol 238:190–218CrossRefGoogle Scholar
  108. Weinfurter E (1950) Die oberpannonische Fischfauna vom Eichkogel bei Mödling. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, mathem naturw Kl Abt I, 159:37–50Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • István Cziczer
    • 1
    Email author
  • Imre Magyar
    • 2
  • Radovan Pipík
    • 3
  • Madelaine Böhme
    • 4
  • Stjepan Ćorić
    • 5
  • Koraljka Bakrač
    • 6
  • Mária Sütő-Szentai
    • 7
  • Miklós Lantos
    • 8
  • Edit Babinszki
    • 8
  • Pál Müller
    • 8
  1. 1.Department of Geology and PaleontologyUniversity of SzegedSzegedHungary
  2. 2.MOL Hungarian Oil and Gas PlcBudapestHungary
  3. 3.Slovak Academy of Sciences, Geological InstituteBanská BystricaSlovakia
  4. 4.Department on Earth- and Environmental Science, Section PalaeontologyLudwig-Maximilians University MunichMunichGermany
  5. 5.Geological Survey of AustriaViennaAustria
  6. 6.Croatian Geological SurveyZagrebCroatia
  7. 7.KomlóHungary
  8. 8.Geological Institute of HungaryBudapestHungary

Personalised recommendations