Advertisement

International Journal of Earth Sciences

, Volume 98, Issue 7, pp 1643–1654 | Cite as

The stress regime in a Rotliegend reservoir of the Northeast German Basin

  • Inga MoeckEmail author
  • Heinz Schandelmeier
  • Heinz-Gerd Holl
Original Paper

Abstract

In-situ stresses have significant impact, either positive or negative, on the short and long term behaviour of fractured reservoirs. The knowledge of the stress conditions are therefore important for planning and utilization of man-made geothermal reservoirs. The geothermal field Groß Schönebeck (40 km north of Berlin/Germany) belongs to the key sites in the northeastern German Basin. We present a stress state determination for this Lower Permian (Rotliegend) reservoir by an integrated approach of 3D structural modelling, 3D fault mapping, stress ratio definition based on frictional constraints, and slip-tendency analysis. The results indicate stress ratios of the minimum horizontal stress S hmin being equal or increasing 0.55 times the amount of the vertical stress S V (S hmin ≥ 0.55S V ) and of the maximum horizontal stress S Hmax ≤ 0.78–1.00S V in stress regimes from normal to strike slip faulting. Thus, acting stresses in the 4,100-m deep reservoir are S V  = 100 MPa, S hmin = 55 MPa and S Hmax = 78−100 MPa. Values from hydraulic fracturing support these results. Various fault sets of the reservoir are characterized in terms of their potential to conduct geothermal fluids based on their slip and dilatation tendency. This combined approach can be adopted to any other geothermal site investigation.

Keywords

Northeast German Basin Rotliegend fault pattern 3D geological modelling Recent stress field Frictional equilibrium Slip-tendency analysis 

Abbreviations

NEGB

Northeast German Basin

SHmax

Maximum horizontal stress

Shmin

Minimum horizontal stress

SV

Vertical stress

S1

Maximum principle stress

S2

Intermediate principle stress

S3

Minimum principle stress

Notes

Acknowledgments

Special thank is addressed to Agust Gudmundsson and an anonymous referee for helpful and improving comments on this article. Thank is also addressed to D. Bruhn and H. Milsch for valuable advice. We wish to thank Gaz de France-PEG for data release, specially G. Voigtländer and C. Schreyer for friendly cooperation. The 3D model is processed with earthVision®, Dynamic Graphics Inc. (DGI) and 3Dstress, Midland Valley. This multidisciplinary project is a joint research project funded by BMWi, BMBF, BMU, MWI and MWFK.

References

  1. Baltrusch S, Klarner S (1993) Rotliegend-Gräben in NE-Brandenburg. Z dt geol Ges 144:173–186Google Scholar
  2. Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23(8):683–686CrossRefGoogle Scholar
  3. Bayer U, Maystrenko Y, Hoffmann N, Scheck-Wenderoth M, Meyer H (2003) 3D structural modelling and basin analysis of the Central European Basin System (CEBS) between North Sea and Poland. Terra Nostra 3:1–4Google Scholar
  4. Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116:615–626CrossRefGoogle Scholar
  5. Gast R, Gundlach T (2006) Permian strike slip and extensional tectonics in Lower Saxony, Germany. Int J Earth Sci 157(1):41–55Google Scholar
  6. Gehrke D, Moeck I, Schafmeister M-Th, Blöcher G, Zimmermann G (2006) 3D thermo-hydraulic modelling for the geothermal reservoir of Groß Schönebeck (Northeast German Basin). GeoBerlin 2006, 158th annual conference of the DGG, abstract volume:103Google Scholar
  7. Grote R (1998) Die rezente horizontale Hauptspannung im Rotliegenden und Oberkarbon in Norddeutschland. Erdöl Erdgas Kohle 114(10):478–482Google Scholar
  8. Gudmundsson A (2000) Active fault zones and groundwater flow. Geophys Res Lett 27(18):2993–2996CrossRefGoogle Scholar
  9. Gudmundsson A, Fjeldskaar I, Brenner SL (2002) Propagation pathways and fluid transport in jointed and layered rocks in geothermal fields. J Volcanol Geotherm Res 116:257–278CrossRefGoogle Scholar
  10. Franke D, Hoffman N, Kamps J (1989) Alter und struktureller Bau des Grundgebirges im Nordteil der DDR. Z Angew Geol 35(10/11):289–297Google Scholar
  11. Hecht CA, Lempp C, Scheck M (2003) Geomechanical model for the post-Variscan evolution of the Permocarboniferous-Mesozoic basins in Northeast Germany. Tectonophysics 373:125–139CrossRefGoogle Scholar
  12. Holl H-G, Moeck I, Schandelmeier H (2005) Characterization of the tectono-sedimentary evolution of a geothermal reservoir - implications for exploitation (Southern Permian Basin, NE Germany). Proceedings, World Geothermal Congress, Antalya, TurkeyGoogle Scholar
  13. Ito T, Zoback MD (2000) Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole. Geophys Res Lett 27:1045–1048CrossRefGoogle Scholar
  14. Jaeger JC, Cook NGW, Zimmermann RW (2007) Fundamentals of Rock Mechanics, 4th edn. Blackwell, OxfordGoogle Scholar
  15. Kaiser A, Reicherter K, Hübscher C, Gajewski D (2004) Variation of the present-day stress field within the North German Basin – insights from thin shell FE modeling based on residual GPS velocities. Tectonophysics 397:55–72CrossRefGoogle Scholar
  16. Kopf M (1965) Feldgeologie–Dichtebestimmung, Norddeutsch-Polnisches Becken, Ergebnisbericht. VEB Geophysik Leipzig, Unpublished Report, 47 ppGoogle Scholar
  17. Legarth B, Huenges E, Zimmermann G (2005) Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int J Rock Mech Mining Sci 42:1028–1041CrossRefGoogle Scholar
  18. Lempp C, Lerche I (2006) Correlation of stress directions across the North German Basin: suprasalt and subsalt differences. Z dt Ges Geowiss 157(2):279–298Google Scholar
  19. McCann T (1998) Sandstone composition and provenance of the Rotliegend of the NE German Basin. Sediment Geol 116:177–198CrossRefGoogle Scholar
  20. Marotta AM, Bayer U, Thybo H (2000) Origin of the regional stress in the North German Basin: results from numerical modelling. Tectonophysics 360:245–265CrossRefGoogle Scholar
  21. Marotta AM, Bayer U, Thybo H, Scheck M (2002) The legacy of the NE German Basin—reactivation by compressional buckling. Terra Nova 12:132–140CrossRefGoogle Scholar
  22. Mazur S, Scheck-Wenderoth M, Krzywiec P, (2005) Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci 95(5–6):782–798CrossRefGoogle Scholar
  23. Moeck I, Backers T (2006) New ways in understanding borehole breakouts and wellbore stability by fracture mechanics based numerical modelling. In: EAGE 68th Conference and Exhibition, 12–15 June 2006, extended abstracts volume, CD-ROM, P214, Vienna, AustriaGoogle Scholar
  24. Moeck I, Blöcher G, Koch-Moeck M, Holl H-G (2006) 3D structural model building based on 2D seismic and well data using kriging with external drift. In: Pirard E, Dassargues A, Havenith H-B (eds) IAMG 11th international congress—quantitative geology from multiple sources. Extended abstract volume, S14–21, Society for Mathematical Geology, 3–8 September, Liege, BelgiumGoogle Scholar
  25. Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275–278CrossRefGoogle Scholar
  26. Moos D, Zoback MD (1990) Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes. J of Geophy Res 95:9305–9325CrossRefGoogle Scholar
  27. Moos D, Zoback MD (1993) State of stress in the Long Valley caldera. Geology 21:837–840CrossRefGoogle Scholar
  28. Peška P, Zoback MD (1995) Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. J Geophy Res 100(B7):12,791–12,811Google Scholar
  29. Reinicke A, Zimmermann G, Huenges E, Burkhardt H (2005) Estimation of hydraulic parameters after stimulation experiments in the geothermal reservoir Groß Schönebeck 3/90 (North-German Basin). Int J Rock Mech Mining Sci 42(7–8):1082–1087CrossRefGoogle Scholar
  30. Röckel T, Lempp C (2003) Der Spannungszustand im Norddeutschen Becken. ERDÖL ERDGAS KOHLE 119(2):73–80Google Scholar
  31. Roth F, Fleckenstein P (2001) Stress orientations found in northeast Germany differ from the West European trend. Terra Nova 13:290–298CrossRefGoogle Scholar
  32. Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inference from structural model and subsidence analysis. Tectonophysics 313:145–169CrossRefGoogle Scholar
  33. Scheck M, Barrio-Alvers L, Bayer U, Götze HJ (1999) Density structure of the Northeast German Basin: 3D modelling along the DEKORP line BASIN96. Phys Chem Earth (a) 24(3):221–230CrossRefGoogle Scholar
  34. Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe fault system in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299CrossRefGoogle Scholar
  35. Scheck M, Bayer U, Lewerenz B (2003) Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics 373:55–73CrossRefGoogle Scholar
  36. Weinlich M (1991) Rotliegendbruchsystem und basaler Zechstein in Brandenburg. Z dt geol Ges 142:199–207Google Scholar
  37. Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd edn. Shell Int. Petroleum Mij BV and Geol Soc of London (London), pp 1–239Google Scholar
  38. Ziegler PA, Dezes P (2005) Crustal Evolution of Western and Central Europe. In: Gee D, Stephenson RA (Eds) Europe lithosphere dynamics. Memoirs of the Geological Society, LondonGoogle Scholar
  39. Zhang X, Sanderson DJ, Barker AJ (2002) Numerical study of fluid flow of deforming fractured rocks using dual porosity permeability model. Geophys J Int 151(2):452–468CrossRefGoogle Scholar
  40. Zhang X, Koutsabeloulis N, Heffer K (2007) Hydromechanical modeling of critically stressed and faulted reservoirs. AAPG Bull 91(1):31–50CrossRefGoogle Scholar
  41. Zhu W, Wong T-F (1997) The transition from brittle faulting to cataclastic flow in porous sandstone: permeability evolution. J Geophys Res 102:3027–3041CrossRefGoogle Scholar
  42. Zoback ML (1992) First and second order patterns of stress in the lithosphere: the World Stress Map project. J Geophys Res 97:11703–11728Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Inga Moeck
    • 1
    Email author
  • Heinz Schandelmeier
    • 3
  • Heinz-Gerd Holl
    • 1
    • 2
  1. 1.Section GeothermicsGFZ PotsdamPotsdamGermany
  2. 2.Schlumberger Oilfield Australia Pty Ltd.BrisbaneAustralia
  3. 3.TU Berlin, Institut für Angewandte GeowissenschaftenBerlinGermany

Personalised recommendations