Advertisement

International Journal of Earth Sciences

, Volume 98, Issue 5, pp 1063–1075 | Cite as

Monitoring Cenozoic climate evolution of northeastern Tibet: stable isotope constraints from the western Qaidam Basin, China

  • Andrea B. RieserEmail author
  • Ana-Voica Bojar
  • Franz Neubauer
  • Johann Genser
  • Yongjiang Liu
  • Xiao-Hong Ge
  • Gertrude Friedl
Original Paper

Abstract

Carbon and oxygen stable isotopic composition of Cenozoic lacustrine carbonates from the intramontane Qaidam Basin yields cycles of variable length and shows several distinct events driven by tectonics and climate changes. From Eocene to Oligocene, the over-all trend in the δ13C composition of lacustrine carbonates shows a shift toward higher values, possibly related to higher proportions of dissolved inorganic carbon transported to the lake or lower input of soil derived CO2. At the same time, the δ18O composition of lacustrine carbonates is decreasing in accordance with the global cooling trend and northwards drifting of the whole region. During the Miocene, distinct isotopic events can be recognized, although their interpretation and linkage to a certain tectonic event remains difficult. These events may be related to uplift in the Himalayas, to the strongest phase of uplift in the Altyn Mountains, to pronounced subsidence of the Qaidam Basin or to the expansion of C4 plants on land. Generally cold, highly evaporative conditions can be deduced from enrichment of δ18O isotopic compositions during Pliocene and Quaternary times.

Keywords

Stable isotopes Intracontinental basin Climate change Evaporation Lacustrine carbonate 

Notes

Acknowledgments

We gratefully acknowledge the permission by Ma Lixiang (Department of Petroleum, China University of Geosciences, Wuhan) to use the lithostratigraphic section of Hongsanhan Third High Peak Valley. We acknowledge continuous support for fieldwork in the Qaidam Basin by both NSF of China and Qinghai Oil Company. Ana-Voica Bojar acknowledges partial financial support by FWF project P16258-N06. This manuscript has profited from a review of an earlier version by Frédéric Fluteau and consequent review by two anonymous reviewers.

References

  1. An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya Tibetan plateau since late Miocene times. Nature 411:62–66CrossRefGoogle Scholar
  2. Bade DB, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of d13C-DIC in lakes: geochemistry, lake metabolism, and morphometry. Limnol Oceanogr 49/4:1160–1172CrossRefGoogle Scholar
  3. Bojar A-V, Fritz H, Nicolescu S, Bregar M, Gupta RP (2005a) Timing and mechanisms of Central Himalayan exhumation: discriminating between tectonic and erosion processes. Terra Nova 17:427–433CrossRefGoogle Scholar
  4. Bojar A-V, Rieser AB, Neubauer F, Bojar H-P, Genser J, Liu Y, Ge X (2005b) Stable isotopic and mineralogical investigations of an arid Quaternary lacustrine paleoenvironment, Western Qaidam basin, China. Geol Q 49/2:173–184Google Scholar
  5. Burbank DW, Blythe AE, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha TP (2003) Decoupling of erosion and precipitation in the Himalayas. Nature 426:652–655CrossRefGoogle Scholar
  6. Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345CrossRefGoogle Scholar
  7. Currie BS, Rowley DB, Tabor NJ (2005) Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology 33:181–184CrossRefGoogle Scholar
  8. DeCelles PG, Quade J, Kapp P, Fan M, Dettman DL, Ding L (2006) High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett:  doi:10.1016/j.epsl.2006.11.001
  9. Dettman DL, Fang X, Garzione CN, Li J (2003) Uplift-driven climate change at 12 Ma: a long d18O record from the NE margin of the Tibetan plateau. Earth Planet Sci Lett 214:267–277CrossRefGoogle Scholar
  10. Duan Z, Hu W (2001) The accumulation of potash in a continental basin: the example of the Qarhan Saline Lake, Qaidam Basin, West China. Eur J Minerol 13:1223–1233CrossRefGoogle Scholar
  11. Farquhar GD, Hubick KT, Condon AG, Richards RA (1988) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, Heidelberg, pp 21–40Google Scholar
  12. Garzione CN, Dettman DL, Horton BK (2004) Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau. Palaeogeogr Palaeoclimatol Palaeoecol 212:119–140Google Scholar
  13. Gradstein FM, Ogg JG, Smith A et al (2004) A Geologic time scale 2004. Cambridge University Press, Cambridge, pp 610Google Scholar
  14. Graham SA, Chamberlain CP, Yue Y, Ritts BD, Hanson AD, Horton TW, Waldbauer JR, Poage MA, Feng X (2005) Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin. Am J Sci 305:101–118CrossRefGoogle Scholar
  15. Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wel JJ, Yuan BY, Liu TS (2002) Onset of Asian desertification by 22Myr ago inferred from loess deposits in China. Nature 416:159–163CrossRefGoogle Scholar
  16. Hanson AD, Ritts BD, Zinniker D, Moldowan JM, Biffi U (2001) Upper Oligocene lacustrine source rocks and petroleum systems of the northern Qaidam basin, northwest China. Am Assoc Pet Geol Bull 85(4): 601–619Google Scholar
  17. Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670CrossRefGoogle Scholar
  18. Hays PD, Grossman EL (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geology 19:441–444CrossRefGoogle Scholar
  19. Huang X, Shao H (1993) Sedimentary characteristics and types of hydrocarbon source rocks in the Tertiary semiarid to arid lake basins of northwest China. Palaeogeogr Palaeoclimatol Palaeoecol 103:33–43Google Scholar
  20. Huang Q, Huang H, Ma Y (1997) Geology of Qaidam basin and its petroleum prediction. Geological Publishing House, Beijing, 158 ppGoogle Scholar
  21. Johnson KR, Ingram BL (2004) Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions. Earth Planet Sci Lett 220:365–377CrossRefGoogle Scholar
  22. Kutzbach JE, Ruddiman WF, Prell WL (1997) Possible effects of Cenozoic uplift and CO2 lowering on global and regional hydrology. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Press, new York, pp 150–170Google Scholar
  23. Last WM (1990) Lacustrine dolomite—an overview of modern, Holocene, and Pleistocene occurrences. Earth Sci Rev 27:221–263CrossRefGoogle Scholar
  24. Lear CH, Elderfield H, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272CrossRefGoogle Scholar
  25. Lehmkuhl F, Haselein F (2000) Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (Western China and Western Mongolia). Quat Int 65/66:121–145CrossRefGoogle Scholar
  26. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from the lake sediment archives. Quat Sci Rev 23(7–8):811–831CrossRefGoogle Scholar
  27. Li T (1996) The process and mechanism of the rise of the Qinghai-Tibet Plateau. Tectonophysics 260:45–53CrossRefGoogle Scholar
  28. Liu Z, Wang Y, Ye C, Li X, Li Q (1998) Magnetostratigraphy and sedimentologically derived geochronology of the Quaternary lacustrine deposits of a 3,000 m thick sequence in the central Qaidam basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol 140:459–473CrossRefGoogle Scholar
  29. Meyer B, Tapponnier P, Bourjot L, Métivier F, Gaudemer Y, Peltzer G, Shunmin G, Zhitai C (1998) Crustal thickening in Gansu-Qinghai, lithosperic mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys J Int 135:1–47CrossRefGoogle Scholar
  30. Qiang XK, Li ZX, Powell CM, Zheng HB (2001) Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth Planet Sci Lett 187:83–93CrossRefGoogle Scholar
  31. Qiu N (2002) Tectono-thermal evolution of the Qaidam Basin, China: evidence from Ro and apatite fission track data. Pet Geosci 8:279–285Google Scholar
  32. Quade J, Cater JML, Ojha TP, Adam J, Harrison M (1995) Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotope evidence from paleosols. Geol Soc Am Bull 107:1381–1397CrossRefGoogle Scholar
  33. Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect on orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–795CrossRefGoogle Scholar
  34. Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122CrossRefGoogle Scholar
  35. Rieser AB, Neubauer F, Liu Y, Ge X (2005) Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam Basin, western China: tectonic vs. climatic control. Sed Geol 177:1–18, doi: 10.1016/j.sedgeo.2005.01.012 CrossRefGoogle Scholar
  36. Rowley DB, Currie BS (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439:677–681CrossRefGoogle Scholar
  37. Searle M (1995) The rise and fall of Tibet. Nature 374:17–18CrossRefGoogle Scholar
  38. Song T, Wang X (1993) Structural styles and stratigraphic patterns of syndepositional faults in a contradictional setting: Examples from Qaidam Basin, NW China. Am Assoc Pet Geol Bull 77:102–117Google Scholar
  39. Spicer RA, Harris NBW, Widdowson M, Herman AB, Guo S, Valdes PJ, Wolfe JA, Kelley S (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624CrossRefGoogle Scholar
  40. Sun X, Wang P (2005) How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222:181–222CrossRefGoogle Scholar
  41. Sun Z, Feng X, Li D, Yang F, Qu Y, Wang H (1999) Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin, western China. Palaeogeogr Palaeoclimatol Palaeoecol 148:37–50CrossRefGoogle Scholar
  42. Sun Z, Yang Z, Pei J, Ge X, Wang X, Yang T, Li W, Yuan S (2005) Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet Sci Lett 237:635–646CrossRefGoogle Scholar
  43. Talbot MR (1994) Paleohydrology of the late Miocene Ridge basin lake, California. Geol Soc Am Bull 106:1121–1129CrossRefGoogle Scholar
  44. Tapponnier P, Ryerson FJ, Van der Woerd J, Mériaux A-S, Lasserre C (2001) Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard. C R Acad Sci Paris II A 333(9):483–494Google Scholar
  45. Tian L, Yao T, Schuster PF, White JWC, Ichiyanagi K, Pendall E, Pu J, Yu W (2003) Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res 108:4293, doi: 10.1029/2002JD002173 CrossRefGoogle Scholar
  46. Wang Q, Coward MP (1990) The Chaidam basin (NW China): formation and hydrocarbon potential. J Pet Geol 13:93–112CrossRefGoogle Scholar
  47. Wang J, Wang JY, Liu ZC, Li JQ, Xi P (1999) Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr Palaeoclimatol Palaeoecol 152:37–47CrossRefGoogle Scholar
  48. Xia W, Zhang N, Yuan X, Fan L, Zhang B (2001) Cenozoic Qaidam basin, China: A stronger tectonic inversed, extensional rifted basin. Am Assoc Petrol Geol Bull 85:715–736Google Scholar
  49. Yang F, Ma Z, Xu T, Ye S (1992) A Tertiary paleomagnetic stratigraphic profile in Qaidam Basin. Acta Petrolei Sinica 13:97–101Google Scholar
  50. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 292:686–693CrossRefGoogle Scholar
  51. Zhang X, Hu Y, Ma L, Meng Z, Duan Y, Zhou S, Peng D (2003) Carbon isotope characteristics, origin and distribution of the natural gases from the Tertiary salty lacustrine facies in the west depression region in the Qaidam Basin. Sci China (Ser D) 46:694–707CrossRefGoogle Scholar
  52. Zheng HB, Powell CM, An Z, Zhou J, Dong G (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28:715–718CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea B. Rieser
    • 1
    • 4
    Email author
  • Ana-Voica Bojar
    • 2
  • Franz Neubauer
    • 1
  • Johann Genser
    • 1
  • Yongjiang Liu
    • 3
  • Xiao-Hong Ge
    • 3
  • Gertrude Friedl
    • 1
  1. 1.Division General Geology and GeodynamicsUniversity of SalzburgSalzburgAustria
  2. 2.Institute of Earth SciencesUniversity of GrazGrazAustria
  3. 3.College of Earth SciencesJilin UniversityChangchunChina
  4. 4.WettingenSwitzerland

Personalised recommendations