International Journal of Earth Sciences

, Volume 98, Issue 5, pp 949–967 | Cite as

“Granite tectonics” revisited: insights from comparison of K-feldspar shape-fabric, anisotropy of magnetic susceptibility (AMS), and brittle fractures in the Jizera granite, Bohemian Massif

  • Jiří Žák
  • Kryštof Verner
  • Josef Klomínský
  • Marta Chlupáčová
Original Paper

Abstract

In the Jizera granite of the Krkonoše–Jizera Plutonic Complex, northern Bohemian Massif, contrasting patterns of magmatic K-feldspar fabrics and brittle fractures characterize different structural levels of the pluton. The uppermost exposed level at ∼800–1,100 m above sea level is dominated by flat foliation that overprints two steep foliations. In contrast, K-feldspar shape-fabric in an underground tunnel (∼660 m above sea level) shows complex variations in orientation and intensity. Magnetic fabric carried by coaxial contributions of biotite, magnetite, and maghemite is homogeneous along the examined section of the tunnel, and is decoupled from the K-feldspar fabric. The Jizera granite is crosscut by two regional sets of subvertical fractures (∼NE–SW and ∼NW–SE) and by near-surface exfoliation joints. The multiple fabrics are inferred to reflect a complex magmatic strain history at different structural levels of the pluton, bearing little or no relationship to the fracture network. In contrast to the original concept of Hans Cloos (“granite tectonics”), we conclude that no simple genetic relationship exists between fabrics and fractures in plutons. An alternative classification of fractures in plutons thus should avoid relationships to magmatic fabrics and should instead consist of cooling, syntectonic, uplift, and post-uplift fractures.

Keywords

Bohemian Massif Fracture Granite Fabric Pluton 

Notes

Acknowledgments

We would like to thank Dov Bahat and Robert Miller for their very constructive reviews that helped us to improve the original manuscript. František Hrouda is gratefully acknowledged for discussions and help with the interpretation and measuring AMS in the laboratories of AGICO Ltd, Brno, Czech Republic. Vladimír Bělohradský is thanked for field assistance and help with underground mapping in the tunnels. Severočeské vodárny a kanalizace, Ltd are acknowledged for allowing us to access and work in the water-plant tunnels. The research was supported by the Radioactive Waste Repository Authority of the Czech Republic (SÚRAO) project “Geological and structural characterization of granitoids in the Bedřichov tunnel in the Jizera Mountains” (to Josef Klomínský), by the Czech Geological Survey Internal Research Project No. 3238 “Relationship between magmatic fabrics and fracture networks in plutons” (to Jiří Žák), and by the Ministry of Education, Youth and Sports of the Czech Republic Research Plan No. MSM0021620855.

References

  1. Aleksandrowski P, Mazur S (2002) Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:237–277Google Scholar
  2. Aleksandrowski P, Kryza R, Mazur S, Zaba J (1997) Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geol Mag 134:727–739CrossRefGoogle Scholar
  3. Aleksandrowski P, Kryza R, Mazur S, Pin C, Zalasiewicz JA (2000) The Polish Sudetes: Caledonian or Variscan? Trans Roy Soc Edin: Earth Sci 90:127–146Google Scholar
  4. Arbaret L, Mancktelow NS, Burg JP (2001) Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow. J Struct Geol 23:113–125CrossRefGoogle Scholar
  5. Bahat D, Rabinovitch A (1988) Paleostress determination in a rock by a fractographic method. J Struct Geol 10:193–199CrossRefGoogle Scholar
  6. Bahat D, Grossenbacher K, Karasaki K (1999) Mechanism of exfoliation joint formation in granitic rocks, Yosemite National Park. J Struct Geol 21:85–96CrossRefGoogle Scholar
  7. Bahat D, Bankwitz P, Bankwitz E (2001a) Changes of crack velocities at the transition from the parent joint through the en echelon fringe to a secondary mirror plane. J Struct Geol 23:1215–1221CrossRefGoogle Scholar
  8. Bahat D, Bankwitz P, Bankwitz E (2001b) Joint formation in granite plutons: en echelon-hackle series on mirror fringes (example: South Bohemian Pluton, Czech Republic). Z Deutsch geol Ges 152:593–609Google Scholar
  9. Bahat D, Bankwitz P, Bankwitz E (2003) Preuplift joints in granites: evidence for subcritical and postcritical fracture growth. Geol Soc Am Bull 115:148–165CrossRefGoogle Scholar
  10. Bahat D, Rabinovitch A, Frid V (2005) Tensile fracturing in rocks. Springer, Berlin, pp 1–570Google Scholar
  11. Balk R (1937) Structural behavior of igneous rocks. Geol Soc Am Memoir 5:1–177Google Scholar
  12. Bankwitz P, Bankwitz E (2004a) The relationship of tilt and twist of fringe cracks in granite plutons. In: Cosgrove JW, Engelder T (eds) The initiation, propagation, and arrest of joints and other fractures. Geol Soc Lond Spec Publ 231:183–208Google Scholar
  13. Bankwitz P, Bankwitz E (2004b) Bildungstiefe und Bildungszeitpunkt von frühen Klüften in Granitplutonen. Z geol Wiss 32:131–160Google Scholar
  14. Bankwitz P, Bahat D, Bankwitz E (2000) Granitklüftung—Kenntnisstand 80 Jahre nach Hans Cloos. Z geol Wiss 28:87–110Google Scholar
  15. Bankwitz P, Bankwitz E, Thomas R, Wemmer K, Kämpf H (2004) Age and depth evidence for pre-exhumation joints in granite plutons: fracturing during the early cooling stage of felsic rock. In: Cosgrove JW, Engelder T (eds) The initiation, propagation, and arrest of joints and other fractures. Geol Soc Lond Spec Publ 231:25–47Google Scholar
  16. Barros CEM, Barbey P, Boullier AM (2001) Role of magma pressure, tectonic stress and crystallization progress in the emplacement of syntectonic granites. The A-type Estrela Granite Complex (Carajás Mineral Province, Brazil). Tectonophysics 343:93–109CrossRefGoogle Scholar
  17. Benn K, Paterson SR, Lund SP, Pignotta GS, Kruse S (2001) Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith. Phys Chem Earth 26:343–354CrossRefGoogle Scholar
  18. Bergbauer S, Martel SJ (1999) Formation of joints in cooling plutons. J Struct Geol 21:821–835CrossRefGoogle Scholar
  19. Bergbauer S, Martel SJ, Hieronymus CF (1998) Thermal stress evolution in cooling pluton environments of different geometries. Geophys Res Lett 25:707–710CrossRefGoogle Scholar
  20. Berger AR, Pitcher WS (1970) Structures in granitic rocks: a commentary and critique on granite tectonics. Proc Geol Soc Lond 81:41–461Google Scholar
  21. Borradaile G (2003) Statistics of Earth Science data: their distribution in space, time, and orientation. Springer, Berlin, pp 1–351Google Scholar
  22. Borradaile G, Kehlenbeck M (1996) Possible cryptic tectono-magnetic fabrics in ‘post-tectonic’ granitoid plutons of the Canadian Shield. Earth Planet Sci Lett 137:119–127CrossRefGoogle Scholar
  23. Borradaile G, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Sci Rev 42:49–93CrossRefGoogle Scholar
  24. Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernández F, Lüneburg CM, Auborg C, Jackson M (eds) Magnetic fabric: methods and application. Geol Soc Lond Spec Publ 238:299–360Google Scholar
  25. Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 95–112Google Scholar
  26. Callahan CN, Markley MJ (2003) A record of crustal-scale stress: igneous foliation and lineation in the Mount Waldo Pluton, Waldo County, Maine. J Struct Geol 25:541–555CrossRefGoogle Scholar
  27. Cloos H (1922) Streckung und Rutschstreifen im Granit vom Zobten in Schlesien. Tektonik und Magma. Untersuchungen zur Geologie der Tiefen, Abh. Prenss. Geol. L. A. N. F. 89, Berlin, pp 103–109Google Scholar
  28. Cloos H (1925) Einführung in die tektonische Behandlung magmatischer Erscheinungen (Granittektonik). 1. Das Riesengebirge in Schlesien. Borntraeger, Berlin, pp 1–194Google Scholar
  29. Cymerman Z, Piasecki MAJ, Seston R (1997) Terranes and terrane boundaries in the Sudetes, northeast Bohemian Massif. Geol Mag 134:717–725CrossRefGoogle Scholar
  30. Dobeš P, Jačková I, Čejková B, Klomínský J (2006) Paleofluids in hydrothermal veins in granites of the Bedřichov water tunnel (Jizerské hory Mts., Czech Republic)—preliminary stable isotope and fluid inclusion study. Min Polonica Spec Pap 28:54–56Google Scholar
  31. Dunlop DJ, Özdemir Ö (1997) Rock magnetism, fundamentals and frontiers. Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, pp 1–573Google Scholar
  32. Duthou JL, Couturie J, Mierzejewski M, Pin C (1991) Dating a granite sample from the Karkonosze Mountains using the Rb/Sr whole rock isochron method. Przeglad Geol 39:75–78Google Scholar
  33. Ehlen J (1999) Fracture characteristics in weathered granites. Geomorphology 31:29–45CrossRefGoogle Scholar
  34. Gerla PJ (1988) Stress and fracture evolution in a cooling pluton: an example from the Diamond Joe stock, western Arizona, USA. J Volcanol Geoth Res 34:267–282CrossRefGoogle Scholar
  35. Hancock PL, Engelder T (1989) Neotectonic joints. Geol Soc Am Bull 101:1197–1208CrossRefGoogle Scholar
  36. Hladil J, Patočka F, Kachlík V, Melichar R, Hubačík M (2003) Metamorphosed carbonates of Krkonoše Mountains and Paleozoic evolution of Sudetic terranes (NE Bohemia, Czech Republic). Geol Carpath 54:281–297Google Scholar
  37. Hogan JP, Price JD, Gilbert MC (1998) Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime. J Struct Geol 20:1155–1168CrossRefGoogle Scholar
  38. Holzhausen GR (1989) Origin of sheet structure, 1. Morphology and boundary conditions. Eng Geol 27:225–278CrossRefGoogle Scholar
  39. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82CrossRefGoogle Scholar
  40. Hrouda F (1994) A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys J Int 118:604–612CrossRefGoogle Scholar
  41. Hrouda F, Jelínek V, Hrušková L (1990) A package of programs for statistical evaluation of magnetic data using IBM-PC computers. EOS Transactions, AGU, San Francisco, pp 1289Google Scholar
  42. Hudson JA, Priest SD (1979) Discontinuities and rock mass geometry. Int J Rock Mech Mining Sci 16:339–362CrossRefGoogle Scholar
  43. Ildefonse B, Mancktelow NS (1993) Deformation around rigid particles: the influence of slip at the particle/matrix interface. Tectonophysics 221:345–359CrossRefGoogle Scholar
  44. Ildefonse B, Launeau P, Bouchez JL, Fernandez A (1992a) Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. J Struct Geol 14:73–83CrossRefGoogle Scholar
  45. Ildefonse B, Sokoutis D, Mancktelow NS (1992b) Mechanical interactions between rigid particles in a deforming ductile matrix. Analogue experiments in simple shear flow. J Struct Geol 14:1253–1266CrossRefGoogle Scholar
  46. Ildefonse B, Arbaret L, Diot H (1997) Rigid particles in simple shear flow: is their orientation periodic or steady-state? In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 177–185Google Scholar
  47. Jackson M, Tauxe L (1991) Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Rev Geophys 29:371–376Google Scholar
  48. Ježek J, Melka R, Schulmann K, Venera Z (1994) The behaviour of rigid triaxial ellipsoidal particles in viscous flows-modeling of fabric evolution in a multiparticle system. Tectonophysics 229:165–180CrossRefGoogle Scholar
  49. Ježek J, Schulmann K, Segeth K (1996) Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows. Tectonophysics 257:203–221CrossRefGoogle Scholar
  50. Ježek J, Saic S, Segeth K, Schulmann K (1999) Three-dimensional hydrodynamical modelling of viscous flow around a rotating ellipsoidal inclusion. Comp Geosci 25:547–558CrossRefGoogle Scholar
  51. Jelínek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophys Geodet 22:50–62CrossRefGoogle Scholar
  52. Jelínek V (1981) Characterisation of magnetic fabric of rocks. Tectonophysics 79:63–67CrossRefGoogle Scholar
  53. Jelínek V, Pokorný J (1997) Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys Chem Earth 22:179–181CrossRefGoogle Scholar
  54. Knapp RB, Norton D (1981) Preliminary numerical analysis of processes related to magma crystallization and stress evolution in cooling pluton environments. Am J Sci 281:35–68CrossRefGoogle Scholar
  55. Klomínský J (1969) The Krkonoše–Jizera granitoid massif. Sb geol věd 15:1–134Google Scholar
  56. Klomínský J (ed) (2005) Geological and structural characterization of granitoids in water-plant tunnels in the Jizera Mountains. Final report, Radioactive Waste Repository Authority (SÚRAO), Prague, pp 1–159Google Scholar
  57. Kozdrój W, Krentz O, Opletal M (eds) (2001) Geological map Lausitz-Jizera-Karkonosze (without Cenozoic sediments), 1:100,000. Sächsisches Landesamt für Umwelt und Geologie, Panstwowy Instytut Geologiczny, Česká geologická služba, WarszawGoogle Scholar
  58. Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids–significance for the evolution of the Variscan orogen in East-Central-Europe. Geol Rundsch 83:357–376Google Scholar
  59. Launeau P, Cruden AR (1998) Magmatic fabric acquisition in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. J Geophys Res 103:5067–5089CrossRefGoogle Scholar
  60. Majerowicz A (1986) Some selected problems concerning the tectonics of granitoids of the Strzegom-Sobotka massif (SW Poland). Geol Rundsch 75:625–634CrossRefGoogle Scholar
  61. Maluski H, Patočka F (1997) Geochemistry and 40Ar/39Ar geochronology of the mafic metavolcanic rocks from the Rýchory Mountains complex (west Sudetes, Bohemian Massif): paleotectonic significance. Geol Mag 134:703–716CrossRefGoogle Scholar
  62. Marheine D, Kachlík V, Maluski H, Patočka F, Zelazniewicz A (2002) The40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan tectonothermal development. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:133–155Google Scholar
  63. Marre J (1986) The structural analysis of granitic rocks. North Oxford Academic Publishers, London, pp 1–123Google Scholar
  64. Mazur S (2002) Geology of the Karkonosze–Izera Massif: an overview. Min Soc Poland Spec Pap 20:22–34Google Scholar
  65. Mazur S, Aleksandrowski P (2001) The Teplá(?)/Saxothuringian suture in the Karkonosze–Izera massif, western Sudetes, central European Variscides. Int J Earth Sci 90:341–360CrossRefGoogle Scholar
  66. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan orogen in Poland. Geol Q 50:89–118Google Scholar
  67. Mierzejewski MP (2002) Additional data and remarks to Hans Cloos work in the Karkonosze Mts. (Riesengebirge). Z geol Wiss 30:37–48Google Scholar
  68. Miller RB, Paterson SR (1994) The transition from magmatic to high-temperature solid-state deformation: implications from the Mount Stuart batholith, Washington. J Struct Geol 16:853–865CrossRefGoogle Scholar
  69. Müller A, Müller B, Behr HJ (2001) Structural contrasts in granitic rocks of the Lusatian Granodiorite Complex and the Erzgebirge, Germany—in commemoration of Hans Cloos. Z geol Wiss 29:521–544Google Scholar
  70. Nagata T (1961) Rock Magnetism. Maruzen, Tokyo, pp 1–350Google Scholar
  71. Park Y, Means WD (1996) Direct observation of deformation processes in crystal mushes. J Struct Geol 18:847–858CrossRefGoogle Scholar
  72. Parma J, Zapletal K (1991) CS-1 apparatus for measuring the temperature dependence of low-field susceptibility of minerals and rocks (in co-operation with the KLY-2 Kappabridge). Leaflet, Geofyzika BrnoGoogle Scholar
  73. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363CrossRefGoogle Scholar
  74. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82CrossRefGoogle Scholar
  75. Paterson SR, Onezime J, Teruya L, Žák J (2003) Quadruple-pronged enclaves: their significance for the interpretation of multiple magmatic fabrics in plutons. J Virtual Explorer 10:15–30Google Scholar
  76. Patočka F, Pin C (2005) Sm-Nd and trace element evidence for heterogeneous igneous protoliths of Variscan mafic blueschists in the East Krkonoše Complex (West Sudetes, NE Bohemian Massif, Czech Republic). Geodin Acta 18:363–374CrossRefGoogle Scholar
  77. Pollard DD, Aydin A (1988) Progress in understanding jointing over the past century. Geol Soc Am Bull 100:1181–1204CrossRefGoogle Scholar
  78. Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge, pp 1–502Google Scholar
  79. Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Mining Sci 13:135–148Google Scholar
  80. Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Mining Sci 18:183–197CrossRefGoogle Scholar
  81. Rives T, Razack M, Petit JP, Rawnsley KD (1992) Joint spacing: analogue and numerical simulations. J Struct Geol 14:925–937CrossRefGoogle Scholar
  82. Román-Berdiel T, Pueyo-Morer EL (2000) Joints orientation related with the magmatic anisotropy in the Trives granitic massif (NW Spain). CR Earth Planet Sci 330:437–443Google Scholar
  83. Rosenberg CL (2001) Deformation of partially molten granite: a review and comparison of experimental and natural case studies. Int J Earth Sci 90:60–76CrossRefGoogle Scholar
  84. Rosenberg CL, Handy MR (2001) Mechanisms and orientation of melt segregation paths during pure shearing of a partially molten rock analog (norcamphor–benzamide). J Struct Geol 23:1917–1932CrossRefGoogle Scholar
  85. Schulmann K, Ježek J, Venera Z (1997) Perpendicular linear fabrics in granite: markers of combined simple shear and pure shear flows? In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 159–176Google Scholar
  86. Segall P, Pollard DD (1983) Joint formation in the granitic rock of the Sierra Nevada. Geol Soc Am Bull 94:563–575CrossRefGoogle Scholar
  87. Segall P, McKee EH, Martel SJ, Turin BD (1990) Late Cretaceous age of fractures in the Sierra Nevada batholith, California. Geology 18:1248–1251CrossRefGoogle Scholar
  88. Sen Z, Kazi A (1984) Discontinuity spacing and RQD estimates from finite length scanlines. Int J Rock Mech Mining Sci 21:203–212CrossRefGoogle Scholar
  89. Slaby E, Götze J (2004) Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modeling—a case study from the Karkonosze pluton (SW Poland). Min Mag 68:561–577CrossRefGoogle Scholar
  90. Slaby E, Galbarczyk-Gasiorowska L, Baszkiewicz A (2002) Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland). Acta Geol Polonica 52:501–519Google Scholar
  91. Slaby E, Galbarczyk-Gasiorowska L, Seltmann R, Müller A (2007a) Alkali feldspar megacryst growth: geochemical modelling. Miner Petrol 89:1–29CrossRefGoogle Scholar
  92. Slaby E, Seltmann R, Kober B, Müller A, Galbarczyk-Gasiorowska L, Jeffries T (2007b) LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton–implications for the parental magma composition. Min Mag 71:193–217CrossRefGoogle Scholar
  93. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, pp 1–217Google Scholar
  94. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosci 5:1–23Google Scholar
  95. Wallis PF, King MS (1980) Discontinuity spacings in a crystalline rock. Int J Rock Mech Mining Sci 17:63–66CrossRefGoogle Scholar
  96. Werner T, Mazur S, Jelenska J (2000) Changing direction of magnetic fabric in a thrust unit: an example from the Karkonosze–Izera Massif (SW Poland). Phys Chem Earth 25:511–517CrossRefGoogle Scholar
  97. Winchester JA, Patočka F, Kachlík V, Melzer M, Nawakowski C, Crowley QG, Floyd PA (2003) Geochemical discrimination of metasedimentary sequences in the Krkonoše–Jizera terrane (west Sudetes, Bohemian Massif): paleotectonic and stratigraphic constraints. Geol Carpath 54:267–280Google Scholar
  98. Žák J, Schulmann K, Hrouda F (2005) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822CrossRefGoogle Scholar
  99. Žák J, Vyhnálek B, Kabele P (2006) Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif). Phys Earth Planet Int 157:286–310CrossRefGoogle Scholar
  100. Žák J, Klomínský J (2007) Magmatic structures in the Krkonoše–Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal–mechanical instabilities in a granitic magma chamber. J Volcanol Geoth Res 164:254–267 CrossRefGoogle Scholar
  101. Žák J, Paterson SR, Memeti V (2007) Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geol Soc Am Bull 119:184–201 CrossRefGoogle Scholar
  102. Zelazniewicz A (1997) The Sudetes as Palaeozoic orogen in central Europe. Geol Mag 134:691–702CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jiří Žák
    • 1
    • 2
  • Kryštof Verner
    • 2
    • 3
  • Josef Klomínský
    • 2
  • Marta Chlupáčová
    • 4
  1. 1.Institute of Geology and Paleontology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Czech Geological SurveyPragueCzech Republic
  3. 3.Institute of Petrology and Structural Geology, Faculty of ScienceCharles UniversityPragueCzech Republic
  4. 4.PragueCzech Republic

Personalised recommendations