International Journal of Earth Sciences

, Volume 97, Issue 5, pp 973–989 | Cite as

Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati

  • Marion Geißler
  • Christoph BreitkreuzEmail author
  • Hubert Kiersnowski
Original Paper


Based on facies analysis of more than 5,500 m cores of 45 deep wells, three large sub-provinces have been defined for the Lower Rotliegend volcanic rocks in the central Southern Permian Basin (SPB) in northeastern Germany and western Poland. Additional data came from unpublished descriptions of more than 200 wells. The three sub-provinces are: (a) the Mecklenburg–Vorpommern Sub-Province (MVSP) dominated by silica-rich lava domes and subvolcanic intrusions, (b) the Eastern Brandenburg Sub-Province (EBSP) dominated by a Mg-andesite shield volcano complex, which extends into western Poland, and (c) the Flechtingen–Altmark Sub-Province (FASP) with prominent ignimbrite sheets punctuated by lava domes and flows. Whereas in NE Germany thickness of up to 2,300 m have been found in places, in western Poland ignimbrites and other pyroclastic deposits as well as andesitic and silica-rich lava complexes accumulated successions of a few hundreds of meters. A hiatus of up to 30 Ma occurs between the Lower Rotliegend volcanic and sedimentary rocks (Asselian–Sakmarian), and Upper Rotliegend II sediments (Upper Wordian–Capitanian). Upper Rotliegend I deposits are known from a few wells and outcrops, only. Previous studies postulated solely intrabasinal tectonics to account for this major unconformity. However, under semiarid to arid conditions as assumed for the Rotliegend of the SPB both SiO2-rich lava complexes and silica-poor shield volcanoes can be expected as being extremely resistant to weathering and erosion. Most probably these bodies “drowned” in a regolith formed by physical weathering, rarely removed by torrential rain. Thus, the silica-rich lava complexes and the shield volcanoes in the Central European Basin System (CEBS) can be viewed as long-living morphological highs, with intervolcanic depressions in between. In these intervolcanic depressions, syn- to postvolcanic successions of conglomeratic to sandy alluvial fan sediments and lake to mud flat deposits accumulated during the Upper Rotliegend I. They show numerous pedogenic horizons representing times of non-deposition. During the Upper Rotliegend II, the remaining volcano-topography was filled up with alluvial, eolian and playa deposits. In some places in western Poland, covering was not complete until the Zechstein (Latest Permian). At the same time, soil formation and/or erosion in the upper part of SiO2-rich complexes and shield volcanoes remained subordinate. Consequently, the volcano-topographic hiatus on top of the volcanic complexes comprises the maximum period of time, whereas in the intervolcanic depressions this time splits into periods of deposition and numerous minor intraformational hiati. Intrabasinal tectonic activity cannot be ruled out as one major control of the Rotliegend depositional evolution in the subsiding SPB. However, the presence of weathering-resistant volcanic edifices led to the formation of long-lasting depositional gaps in many regions of the central SPB.


Volcano-topographic hiatus Late Carboniferous Permian Southern Permian Basin Central Europe Volcanic facies Denudation rates 



Funding for this study came from the German Research Foundation (DFG grant Br 997/21-1,2) in the framework of the Priority Program 1135 (Dynamics of sedimentary systems under varying stress regimes: examples of the Central European Basin). Access to cores and sampling permission was kindly provided by the State Geological Surveys of Mecklenburg–Vorpommern, Sachsen–Anhalt and Brandenburg, and by the Polish Geological Institute and Geonafta. Erdgas Erdöl GmbH Berlin is acknowledged for providing well data. Norbert Hoffmann is thanked for facilitating access to files of the Federal Institute for Geosciences and Natural Resources (BGR) in Berlin-Spandau and for helpful discussions. Stimulating discussion also came from Karsten Obst. Harald Stollhofen and Stephan Königer are thanked for providing careful reviews.


  1. Autorenkollektiv (1986) Dokumentationsband: Kurzprofile Autunvulkanite (N – DDR). Unveröff. Bericht GFE FreibergGoogle Scholar
  2. Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen–Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc Spec Publ 234:5–12Google Scholar
  3. Baltrusch S, Klarner S (1993) Rotliegend–Gräben in NE-Brandenburg. Z Dtsch Geol Ges 144:173–186Google Scholar
  4. Bauer M, Schust F, Stedingk K, Matheis G (1995) The hidden granites of Flechtingen and Roxförde, North German Basin. Zentralbl Geol Paläont Teil I 5/6:553–560Google Scholar
  5. Benek R (1995) Late Variscan calderas/volcanotectonic depressions in eastern Germany. Terr Nostra 7/95:16–19Google Scholar
  6. Benek R, Paech HJ, Schirmer B (1973) Zur Gliederung der permosilesischen Vulkanite der Flechtinger Scholle. Z Geol Wiss 1:867–878Google Scholar
  7. Benek R, Kramer W, McCann T, Scheck M, Negendank J, Korich D, Huebscher H-D, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophys 266:379–404CrossRefGoogle Scholar
  8. Bierman PR, Caffee M (2001) Slow rates of rock surface erosion and sediment production across the Namib Desert and Escarpment, Southern Africa. Am J Sci 301:326–358CrossRefGoogle Scholar
  9. Boche M (1999) Vulkanofazielle und granulometrische Untersuchungen an den oberkarbonischen Ignimbriten der Flechtinger Scholle. Unpubl Diploma Thesis, Univ and GeoForschungsZentrum in Potsdam, p 108Google Scholar
  10. Börmann C, Gast R, Görisch F (2006) Structural and sedimentological analysis of an early Late Rotliegendes graben based on 3D seismic and well log data, German North Sea, Germany. Petrol Geosci 12:1–10Google Scholar
  11. Bogaard PJF, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, central Germany. J Petrol 44:569–602CrossRefGoogle Scholar
  12. Breitkreuz C, Kennedy A (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German basin revealed by SHRIMP zircon ages. Tectonophys 302:307–326CrossRefGoogle Scholar
  13. Breitkreuz C, Karnkowski P, Muszynski A, Panczyk M, Protas A (2000) The Wolsztyn Ridge in western Poland during the Early Permian: paleogeography, volcanic activity and coarse-grained sedimentation at an intra-basinal high. GGW/PTG meeting, Slubice, Exkurs. F. u. Veröfftl GGW 209:58–60Google Scholar
  14. Breitkreuz C, Ehle H, Franz G, Reimer W, Schreiter F (2004) Quantitative geometric analysis of phonolitic mesa flows in the Neogene Meidob Volcanic Field (NW Sudan) based on ASTER satellite images. 32 Int Geol Congr, Firence, Abstract volumeGoogle Scholar
  15. Breitkreuz C, Kennedy A, Geißler M, Ehling B-C, Kopp J, Muszynski A, Protas A, Stouge S (2007) Far Eastern Avalonia: its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland and Denmark). Geol Soc Am Spec Pap 423:173–190Google Scholar
  16. Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Allen & Unwin, London, p 527Google Scholar
  17. Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26CrossRefGoogle Scholar
  18. Corry CE (1988) Laccoliths; mechanics of emplacement and growth. Geol Soc Am Spec Pap 220:1–110Google Scholar
  19. Dadlez R, Narkiewicz M, Stephenson RA, Visser MT, van Wees JD (1995) Tectonic evolution of the Mid-Polish trough: modelling implications and significance for central European geology. Tectonophys 252:179–196CrossRefGoogle Scholar
  20. Davidson J, de Silva SL (2000) Composite volcanoes. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 663–682Google Scholar
  21. De Goër A, Boivin P, Camus G, Gourgaud A, Kieffer G, Merggoil J, Vincent PM (1991) Volcanology of the Chaîne des Puys. Parc Naturel Regional des Volcans d’Auvergne, Imprimerie Moderne, Aurillac, p 127Google Scholar
  22. De Silva SL, Self S, Francis PW, Drake RE, Ramirez C (1994) Effusive silicic volcanism in the Central Andes: the Chao dacite and other young lavas of the Altiplano–Puna volcanic complex. J Geophys Res 99(B9):17805–17825CrossRefGoogle Scholar
  23. Deutsche Stratigraphische Kommission (ed) (2002) Stratigraphische Tabelle von Deutschland 2002. 1. Aufl., E. Stein, PotsdamGoogle Scholar
  24. Dohrenwend JC, Wells SG, Turrin BD (1986) Degradation of quaternary cinder cones in the Cima volcanic field, Mojave Desert, California. Geol Soc Am Bull 97:421–427CrossRefGoogle Scholar
  25. Dohrenwend JC, Abrahams AD, Turrin BD (1987) Drainage development on basaltic lava flows, Cima volcanic field, southeast California, and Luna Crater field, south-central Nevada. Geol Soc Am Bull 99:405–413CrossRefGoogle Scholar
  26. Egenhoff SO, Breitkreuz C (2001) Fazielle Entwicklung und stratigraphische Revision oberkarbonischer Sedimente im Flechtinger Höhenzug (nördlich Magdeburg). Sediment 2001, Jena, Schriftr DGG, Heft 13, p 33Google Scholar
  27. Ekren EB, McIntyre DH, Bennet EH (1984) High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho. USGS Prof Pap 1272:76Google Scholar
  28. Enos P (1991) Sedimentary parameters for computer modeling. In: Franseen EK, Watney WL, Kendall CGStC, Ross W (eds) Sedimentary modeling: computer simulations and methods for improved parameter definition. Bull Kans Geol Surv 233:63–99Google Scholar
  29. Francis EH (1983) Magma and sediment II: problems of interpreting palaevolcanics buried in the stratigraphic column. J Geol Soc Lond 140:165–183CrossRefGoogle Scholar
  30. Franke D, Hoffmann N, Lindert W (1995) The Variscan deformation front in east Germany. Part 1. Geological and geophysical constraints. Z Angew Geol 41:83–91Google Scholar
  31. Franz G, Breitkreuz C, Coyle DA, El Hur B, Heinrich W, Paulick H, Pudlo D, Smith R, Steiner G (1997) The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan). J Afr Earth Sci 25:263–291CrossRefGoogle Scholar
  32. Gabriel W (1990) Der permokarbone Vulkanismus der Altmark. Unpubl PhD Thesis, Martin-Luther Univ, Halle, p 191Google Scholar
  33. Gaitzsch B (1995) Extramontane Senken im variscischen Finalstadium in Norddeutschland—Lithofaziesmuster, Tektonik und Beckenentwicklung. Unpubl PhD Thesis, Techn Univ Bergakademie Freiberg, p 101Google Scholar
  34. Gaitzsch B, Ellenberg J, Lützner H, Benek R (1995) Flechtinger Scholle. In: Plein E (ed) Stratigraphie von Deutschland I—Norddeutsches Rotliegendbecken, Rotliegend-Monographie Teil II. Couri Forsch Senckenb 183:84–96Google Scholar
  35. Gast R (1988) Rifting im Rotliegenden Nierdersachsens. Geowiss 4:115–122Google Scholar
  36. Gast R, Gundlach T (2006) Permian strike-slip and extensional tectonics in Lower Saxony, Germany. Z Dtsch Ges Geowiss 157:41–56CrossRefGoogle Scholar
  37. Gebhardt U, Schneider J, Hoffmann N (1991) Modelle zur Stratigraphie und Beckenentwicklung im Rotliegenden der Norddeutschen Senke. Geol Jb A 127:405–427Google Scholar
  38. Geißler M, Obst K, Breitkreuz C (2006) Magmatic textures and contacts of Permo-Carboniferous volcanic and subvolcanic rocks from the deep wells Mirow 1/74 and Parchim 1/68 and its implications on the initial evolution of the North German Basin. Vis Geosci 11:81–82Google Scholar
  39. Gibbs MT, McAllister P, Kutzbach JE, Ziegler AM, Behling PJ, Rowley DB (2002) Simulations of Permian climate and comparisons with climate-sensitive sediments. J Geol 110:33–55CrossRefGoogle Scholar
  40. Harangi S, Downes H, Kósa L, Szabó Cs, Thirlwall MF, Mason PRD, Mattey D (2001) Almandine garnet in calc-alkaline volcanic rocks of the northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843CrossRefGoogle Scholar
  41. Harry DL, Leeman WP (1995) Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. J Geophys Res 100:10255–10269CrossRefGoogle Scholar
  42. Heeremans M, Faleide JI, Larsen BT (2004) Late Carboniferous–Permian of NW Europe: an introduction to a new regional map. In: Wilson, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc Spec Publ 223:75–88Google Scholar
  43. Hoffmann N (1990) Zur paläodynamischen Entwicklung des Präzechsteins in der Nordostdeutschen Senke. In: Eiserbeck W, Franke D, Harff J, Hoffmann N, Hoth K, Müller EP, Springer J (eds) Geologie und Kohlenwasserstoff-Erkundung im Präzechstein der DDR—Nordostdeutsche Senke. Nds Akad Geowiss Veröfftl 4:5–18Google Scholar
  44. Hoffmann N, Kamps H-J, Schneider J (1989) Neuerkenntnisse zur Biostratigraphie und Paläodynamik des Perms in der Nordostdeutschen Senke—ein Diskussionsbeitrag. Z Angew Geol 35:198–207Google Scholar
  45. Hoffmann N, Pokorski J, Lindert W, Bachmann GH (1997) Rotliegend stratigraphy, palaeogeography and facies in the eastern part of the Central European Basin. Prac Państwow Inst Geol, Warsaw, CL VII, Part 2:75–86Google Scholar
  46. Hoth P (1997) Fazies und Diagenese von Präperm-Sedimenten der Geotraverse Harz–Rügen. Schriftr Gesellsch Geol Wiss 4:139Google Scholar
  47. Hoth K, Huebscher H-D, Korich D, Gabriel W, Enderlein F (1993a) Die Lithostratigraphie der permokarbonischen Effusiva im Zentralabschnitt der Mitteleuropäischen Senke—Der permokarbone Vulkanismus im Zentralabschnitt der Mitteleuropäischen Senke. Geol Jb A 131:179–196Google Scholar
  48. Hoth K, Huebscher H-D, Korich D, Enderlein F, Gabriel W (1993b) Methodik zur Rekonstruktion der Paläomorphologie tiefbegrabener Effusiva in der Mitteleuropäischen Senke. Z Geol Wiss 21:291–297Google Scholar
  49. Hoth K, Rusbült J, Zagora K, Beer H, Hartmann O (1993c) Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke—Dokumentation für den Zeitabschnitt 1962–1990. Schriftenr f Geowiss 2:1–145Google Scholar
  50. Huebscher HD (1989) Petrologie der andesitischen subsequenten variszischen Vulkanite im Ostbrandenburger Vulkanitkomplex und deren epigenetische Umwandlungen. Unpubl PhD Thesis, Ernst Moritz Arndt Univ Greifswald, p 143Google Scholar
  51. Jackowicz E (1983) Petrografia skał wulkanicznych czerwonego spągowca. W: Profile głębokich otworów wiertniczych Instytutu Geologicznego, Ośno IG 2., z. 57, str. 60–76, WarszawaGoogle Scholar
  52. Jackowicz E (1994) Persmkie skaly wulkaniczne pólnocnej czesci monokliny przedsudeckiej. Pr Pánstw Inst Geol 145:1–47Google Scholar
  53. Johnson RW (ed) (1989) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, p 408Google Scholar
  54. Katzung G (1995) Prä-Zechstein in Zentral- und Ostbrandenburg. Berl Geowiss Abh A 168:5–21Google Scholar
  55. Katzung G, Obst K (2004) Perm, Rotliegendes. In: Katzung G (ed) Geologie von Mecklenburg–Vorpommern. E Schweizerbart, Stuttgart, pp 98–132Google Scholar
  56. Kiersnowski H (1997) Depositional development of the Polish Upper Rotliegend Basin and evolution of its sediment source areas. Geol Q 41:433–456Google Scholar
  57. Kiersnowski H, Buniak A (2006) Evolution of the Rotliegend Basin of northwestern Poland. Geol Q 50:119–138Google Scholar
  58. Kleditzsch O (2004) Modalbestand, Materialherkunft und geotektonische Position der Sandsteine des tieferen Oberrotliegend II (Mittel-/Oberperm) der Altmark und angrenzender Gebiete Nordostdeutschlands—Tektonik, Klima oder beides? Z Geol Wiss 32:353–385Google Scholar
  59. Kober F, Ivy-Ochs S, Schlunegger F, Baur H, Kubik PW, Wieler R (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83:97–120CrossRefGoogle Scholar
  60. Korich D (1992) Zur Vulkanologie und Korrelation der permosilesischen Vulkanite im Darß-Uckermark-Eruptivkomplex/Nordostdeutschland. Z Geol Wiss 20:467–473Google Scholar
  61. Korich D, Kramer W (1994) Permosilesische Magmatite im Untergrund von Rügen und der östlich angrenzenden Ostsee. Z Geol Wiss 22:249–256Google Scholar
  62. Krawczyk CM, Stiller M, DEKORP-Basin Research Group (1999) Reflection seismic constraints on Palaeozoic crustal structures and Moho beneath the NE German Basin. Tectonophys 314:241–254CrossRefGoogle Scholar
  63. Legler B, Gebhardt U, Schneider JW (2005) Late Permian non-marine–marine transitional profiles in the central Southern Permian Basin, northern Germany. Int J Earth Sci 94:851–862CrossRefGoogle Scholar
  64. Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive–extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the Late Variscan intermontane Saar–Nahe basin, SW Germany. Geol Soc Lond Spec Publ 234:75–124Google Scholar
  65. Love DW, Connell SD (2005) Late Neogene drainage development on the southeastern Colorado Plateau, New Mexico. New Mexico Mus Nat Hist Sci Bull 28:151–169Google Scholar
  66. Maliszewska A, Kiersnowski H, Jackowicz E (2003) Lower Rotliegend volcaniclastic rocks at Wielkopolska (Western Poland). Pr Państw Inst Geol 179:1–59Google Scholar
  67. Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552CrossRefGoogle Scholar
  68. Marx J (1995) Permokarbonischer Vulkanismus in Niedersachsen. Zentralbl Geol Paläont Teil I 1993(9/10):1429–1442Google Scholar
  69. Marx J, Huebscher H-D, Hoth K, Korich D, Kramer W (1995) Vulkanostratigraphie und Geochemie der Eruptivkomplexe. Stratigraphie von Deutschland I—Norddeutsches Rotliegendbecken. Cour Forsch Senckenb 183:54–83Google Scholar
  70. Menning M (1995) A numerical time scale for the Permian and Triassic periods: an integrative time analysis. In: Scholle PA, Peryt TM, Ulmer-Scholle D (eds) The Permian of Northern Pangea 1: paleogeography, paleoclimates, stratigraphy. Springer, Berlin, pp 77–97Google Scholar
  71. Menning M, Katzung G, Lützner H (1988) Magnetostratigraphic investigations in the Rotliegendes (300–252 Ma) of Central Europe. Z Geol Wiss 16:1045–1063Google Scholar
  72. Mills HH (1976) Estimated erosion rates on Mount Ranier, Washington. Geology 4:401–406CrossRefGoogle Scholar
  73. Németh K, Martin U (1999) Late Miocene paleo-geomorphology of the Bakony–Balaton Highland Volcanic Field (Hungary) using physical volcanology data. Z Geomorph N F 43:417–438Google Scholar
  74. Németh K, White JDL (2003) Geochemical evolution, vent structures, and erosion history of small-volume volcanoes in the Miocene intracontinental Waipiata Volcanic Field, New Zealand. GeoLines 15:98–101Google Scholar
  75. Neumann E-R, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous–Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geol Soc Lond Spec Publ 223:11–40CrossRefGoogle Scholar
  76. Neunzert GH, Gaupp R, Littke R (1996) Absenkungs- und Temperaturgeschichte paläozoischer und mesozoischer Formationen im Nordwestdeutschen Becken. Z Dtsch Geol Ges 147:183–208Google Scholar
  77. Paech H-J, Eisenächer L, Burchardt I (1973) Neue Ergebnisse zur Geologie der Süplinger Schichten (Flechtinger Scholle). Z Geol Wiss 1:831–847Google Scholar
  78. Paulick H, Breitkreuz C (2005) The Late Paleozoic felsic lava-dominated large igneous province in North East Germany: volcanic facies analysis based on drill cores. Int J Earth Sci 94:834–850CrossRefGoogle Scholar
  79. Pik R, Blard P, Vigier N, Lave J, Ayalew D, Yirgu G (2005) Preservation and erosion of a Cenozoic volcanic plateau assessed by cosmogenic nuclids. Constraints for the morpho-tectonic evolution of the Afar Margin. AGU, Fall Meeting 2005, Abstract #U32A-01Google Scholar
  80. Pokorski J (1988) Mapy paleotektoniczne czerwonego spagowca w Polsce. Kwart Geol 32:15–32Google Scholar
  81. Reiners PW, Ehlers TA, Mitchell SG, Montgomery DR (2003) Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 426:645–647CrossRefGoogle Scholar
  82. Rieke H, McCann T, Krawczyk CM, Negendank JFW (2003) Evaluation of controlling factors on facies distribution and evolution in an arid continental environment: an example from the Rotliegend of the NE German Basin. Geol Soc Lond Spec Publ 208:71–94Google Scholar
  83. Roscher M, Schneider J (2006) Permo-Carboniferous climate: early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geol Soc Lond Spec Publ 265:95–136Google Scholar
  84. Ruxton BP, McDougall I (1967) Denudation rates in northeast Papua from potassium–argon dating of lavas. Am J Sci 265:545–561CrossRefGoogle Scholar
  85. Schott B, Schmeling H (1998) Delamination and detachment of a lithospheric root. Tectonophys 296:225–247CrossRefGoogle Scholar
  86. Stedingk K, Hess JC, Bauer M (1997) Zur regionalen Position, Ausbildung und Altersstellung des Granits von Flechtingen. Z Geol Wiss 25:317–329Google Scholar
  87. Stollhofen H (1998) Facies architecture variations and seismogenic structures in the Carboniferous–Permian Saar–Nahe Basin (SW Germany): evidence for extension-related transfer fault activity. Sed Geol 119:47–83CrossRefGoogle Scholar
  88. Thouret J-C (1999) Volcanic geomorphology—an overview. Earth Sci Rev 47:95–131CrossRefGoogle Scholar
  89. Van der Wateren FM, Dunai TJ (2001) Late Neogene passive margin denudation history—cosmogenic isotope measurements from the central Namib Desert. Glob Planet Change 30:271–307CrossRefGoogle Scholar
  90. Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59CrossRefGoogle Scholar
  91. Walker GPL (1984) Topographic evolution of eastern Iceland. Jökull 32:13–20Google Scholar
  92. Wegner H-U (1972) Grobklastische Sedimente des Unterperms in Nordostmecklenburg. Unpubl PhD thesis, Ernst Moritz Arndt Univ Greifswald, p 224Google Scholar
  93. Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volc Geoth Res 8:137–160CrossRefGoogle Scholar
  94. Ziegler P (1990) Geological atlas of western and central Europe, 2nd edn. Shell Int Petrol Mij dist Geol Soc Publ House, Bath, pp 1–239Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Marion Geißler
    • 1
  • Christoph Breitkreuz
    • 1
    Email author
  • Hubert Kiersnowski
    • 2
  1. 1.Institut für GeologieTU Bergakademie FreibergFreibergGermany
  2. 2.Państwowy Instytut GeologicznyWarsawaPoland

Personalised recommendations