International Journal of Earth Sciences

, Volume 98, Issue 4, pp 915–930 | Cite as

Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core

  • J. Hohenegger
  • S. Ćorić
  • M. Khatun
  • P. Pervesler
  • F. Rögl
  • C. Rupp
  • A. Selge
  • A. Uchman
  • M. Wagreich
Original Paper

Abstract

The scientific borehole Baden-Sooss penetrates a succession of Badenian (Langhian, Middle Miocene) sediments at the type locality of the Badenian, the old brickyard Baden-Sooss in the Vienna Basin. The sedimentary succession of the 102-m-cored interval consists of more than 95% bioturbated, medium-to-dark gray marly shales with carbonate contents between 11 and 25% and organic carbon contents between 0.35 and 0.65%. Biostratigraphic investigations on foraminifera (mainly lower part of Upper Lagenid Zone) and calcareous nannoplankton (standard zone NN5) indicate an early Badenian (Langhian) age. Cycles in carbonate content, organic carbon content, and magnetic susceptibility have been identified by power spectra analysis. Correlations between the three variables are extremely significant. Using cross-correlation, periods around 40 m correlate significantly with the 100 kyr−1 eccentricity cycle, the ∼20 m periods with the obliquity cycle, and the 15 to 11-m periods with both precession cycles. Wavelet transformation and decomposition of composite periodic functions were used to obtain the position of the cycle peaks in the profile. Cross-correlation with orbital cycles (La2004) dates the Baden-Sooss core between −14.379 ± 1 and −14.142 my ± 9 kyr.

Keywords

Cylcostratigraphy Middle Miocene Badenian Astronomical tuning 

References

  1. Abels HA, Hilgen FJ, Krijgsman W, Kruk RW, Raffi I, Turko E, Zachariasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20. doi:10.1029/2004PA001129
  2. Abdul Aziz H, Di Stefano A, Foresi LM, Hilgen FJ, Iaccarino SM, Kuiper KF, Lirer F, Salvatorini G, Turco (2007) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol (in press)Google Scholar
  3. Baldi K, Hohenegger J, Rögl F, Rupp C, Pervesler P, Khatun M (2005) Ecology of benthic foraminifera in the drill section of the Badenian Stratotype at Baden-Soos (Middle Miocene, Lower Austria). In: 12th Congress RCMNS, 6–11 September 2005, Vienna, Abstract volume: 15–17Google Scholar
  4. Berggren WA, Kent DV, Swisher CC III, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. Society of Sedimentary Geology (SEMP). Spec Publ 54:129–212Google Scholar
  5. Brix F, Plöchinger B (1988) Erläuterungen zu Blatt Wiener Neustadt. Geol Bundesanst 1–85Google Scholar
  6. Bromley RG, Asgaard U (1975) Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bull Geol Soc Den 24:261–281Google Scholar
  7. Cicha I, Senes J (1968) Sur la position du Miocene de la Paratethys Central dans les cadre du Tertiaire de l’Europe. Geol Zbornik Geol Carp 19:95–116Google Scholar
  8. Cicha I, Rögl F, Rupp C, Ctyroka J (1998) Oligocene–Miocene foraminifera of the Central Paratethys. Abh Senckenberg-naturforsch Ges 549:1–325Google Scholar
  9. Ćorić S, Švabenicka L, Rögl F, Petrova P (2007) Stratigraphical position of Helicosphaera waltrans nannoplankton horizon (NN5, Lower Badenian) Joannea. Geologie und Paläontologie 9:17–19Google Scholar
  10. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York, 639 ppGoogle Scholar
  11. Decker K (1996) Miocene tectonics at the Alpine–Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud Österr 41:33–44Google Scholar
  12. Decker K, Peresson H (1996) Tertiary kinematics in the Alpine–Carpathian–Pannonian system: links between thrusting, transform faulting and crustal extension. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic thrustbelts and basins of Central and Eastern Europe. EAGE Spec Publ 5:69–77Google Scholar
  13. Deng C, Vidic NJ, Verosub KL, Singer MJ, Liu Q, Shaw J, Zhu R (2005) Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J Geophys Res 110:B03103CrossRefGoogle Scholar
  14. Ekdale AA, Mason TR (1988) Characteristic trace–fossil association in oxygen-poor sedimentary environments. Geology 16:720–723CrossRefGoogle Scholar
  15. Ferraz-Mello S (1981) Estimation of periods from unequally spaced observations. Astron J 86:619–624CrossRefGoogle Scholar
  16. Fornaciari E, Di Stefano A, Rio D, Negri A (1996): Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Meditterranean region. Micropaleontology 42:37–63CrossRefGoogle Scholar
  17. Frey RW, Curran AH, Pemberton GS (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:511–528Google Scholar
  18. Fuchs R, Stradner H (1977) Über Nannofossilien im Badenien (Mittelmiozän) der Zentralen Paratethys. Beitr Paläont Österr 2:1–58Google Scholar
  19. Fuchs T (1873) Erläuterungen zur geologischen Karte der Umgebung Wien. Geol Reichsanst Wien 1–47Google Scholar
  20. Grill R (1941) Stratigraphische Untersuchungen mit Hilfe von Mikrofaunen im Wiener Becken und den benachbarten Molasseanteilen. Oel und Kohle 37:595–602Google Scholar
  21. Grill R (1943) Über mikropaläontologische Gliederungsmöglichkeiten im Miozän des Wiener Beckens. Mitt Reichsamt Bodenforsch Wien 6:33–44Google Scholar
  22. Guyodo Y, Gaillot P, Chanell JET (2000) Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983. Earth Planet Sci Let 5666:1–15Google Scholar
  23. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, Malden, 351 ppGoogle Scholar
  24. Hamilton W, Wagner L, Wessely G (2000) Oil and gas in Austria. Mitt Österr Geol Ges 92:235–262Google Scholar
  25. Handler R, Ebner F, Neubauer F, Hermann S, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpathica 57:483–494Google Scholar
  26. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes. In: Wilgus CK et al (eds) Sea-level changes—an integrated approach. SEMP Spec Publ 42:71–108Google Scholar
  27. Hilgen FJ, Krijgsman W, Langereis CG, Lourens LJ, Santarelli A, Zachariasse WJ (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet Sci Let 136:495–510CrossRefGoogle Scholar
  28. Hilgen FJ, Krijgsman W, Raffi I, Turco E, Zachariasse WJ (2000) Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibiscemi (Sicily, Italy). Mar Micropaleontol 38:181–211CrossRefGoogle Scholar
  29. Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:483–487CrossRefGoogle Scholar
  30. Khatun M, Selge A, Hohenegger J, Wagreich M, Stingl K, Scholger R, Pervesler P, Rupp C (2005) Cyclostratigraphy in the Middle Miocene (Lower Badenian) of the southern Vienna Basin. Geophys Res Abstr 8:00840Google Scholar
  31. Kováč M, Baráth I, Harzhauser M, Hlavatý I, Hudáčková N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour Forsch-Inst Senckenberg 246:187–212Google Scholar
  32. Larrasoana JC, Roberts AP, Rohling EJ, Winklhofer M, Wehausen R (2003) Three million years of monsoon variability over the northern Sahara. Clim Dyn 21:689–698CrossRefGoogle Scholar
  33. Laskar J, Robulet P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  34. Latta DK, Anastasio DJ, Hinnov LA, Elrick M, Kodama KP (2006) Magnetic record of Milankovitch rhythms in lithologically noncyclic marine carbonates. Geology 34:29–32CrossRefGoogle Scholar
  35. Linder A, Berchtold W (1976) Statistische Auswertung von Prozentzahlen. UTB Birkhäuser Verlag, Basel, 232 ppGoogle Scholar
  36. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447–462CrossRefGoogle Scholar
  37. Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004a) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, London, pp 409–440Google Scholar
  38. Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004b) Orbital tuning calibrations and conversions for the Neogene Period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, London, pp 469–484Google Scholar
  39. Mader D, Cleaveland L, Bice DM, Montanari A, Koeberl C (2004) High-resolution cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic succession in the Cònero Riviera, Ancona (Italy). Palaeogeogr Palaeoclimat Palaeoecol 211:325–344CrossRefGoogle Scholar
  40. Martini E (1971) Standard tertiary and quartenary calcareous nannoplankton zonation. In: Proceedings of the II planktonic conference, Ed Tecnoscienza Roma, pp 739–785Google Scholar
  41. Mayer-Eymar K (1858) Versuch einer neuen Klassification der Tertiär-Gebilde Europa’s. Verhandlungen der allgem. Schweiz. Gesellschaft für die gesamten Naturwissenschaften bei ihrer Versammlung in Trogen 1857. J. Schläpfer, Trogen 70–71:165–199Google Scholar
  42. McBride EF, Picard MD (1991) Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), Northern Apennines, Italy. Palaios 6:281–290CrossRefGoogle Scholar
  43. Morlet J, Arens G, Fourgeau E, Girard D (1982) Wave propagation and sampling theory. 2. Sampling theory and complex waves. Geophys 47:203–221CrossRefGoogle Scholar
  44. Ohneiser C, Wilson G, Field B, Crundwell M (2006) Evidence for orbital pacing through the middle Miocene climatic deterioration from the Southwest Pacific. Geophys Res Abstr 8:05421Google Scholar
  45. Papp A, Cicha I, Seneš J, Steininger F (1978) Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys M4. Badenien. Chronostrat and Neostrat 6 (Bratislava), p 593Google Scholar
  46. Papp A, Steininger F (1978) Holostratotypus des Badenien: Baden-Sooss. In: Papp A, Cicha I, Seneš J, Steininger F (eds) M4 Badenien (Moravien, Wielicien, Kosovien). Chronostrat and Neostrat 6:138–145 (Veda SAV, Bratislava)Google Scholar
  47. Papp A, Turnovsky K (1953) Die Entwicklung der Uvigerinen im Vindobon (Helvet und Torton) des Wiener Beckens. J Geol Bundesanst 46:117–142Google Scholar
  48. Papp A, Grill R, Janoschek R, Kapounek J, Kollmann K, Turnovsky K (1968) Zur Nomenklatur des Neogens in Österreich – Nomenclature of the Neogene of Austria. Verh Geol Bundesanst 1968:9–27Google Scholar
  49. Piller WE, Harzhauser M (2005) The myth of the brackish Sarmatian Sea. Terra Nova 17:450–455CrossRefGoogle Scholar
  50. Piller WE, Egger H, Erhart CW, Gross M, Harzhauser M, Hubmann B, van Husen D, Krenmayr H-G, Krystyn L, Lein R, Lukeneder A, Mandl GW, Rögl F, Roetzel R, Rupp C, Schnabel W, Schönlaub HP, Summesberger H, Wagreich M, Wessely G (2004) Die stratigraphische Tabelle von Österreich 2004 (sedimentäre Schichtfolgen)Google Scholar
  51. Press WH, Teukolsky SA, Veterling WT, Flannery BP (2002) Numerical recipes in C++. Cambridge University Press, Cambridge, pp 580–589Google Scholar
  52. Ratschbacher L, Frisch W, Linzer H-G, Merle O (1991) Lateral extrusion in the Eastern Alps, 2. Structural analysis. Tectonics 10:257–271CrossRefGoogle Scholar
  53. Rögl F, Ćorić S, Hohenegger J, Pervesler P, Roetzel R, Scholger R, Spezzaferri S, Stingl K (2007) Cyclostratigraphy and transgressions at the Early/Middle Miocene (Karpatian/Badenian) boundary in the Austrian Neogene basins (Central Paratethys). Austrian J. Earth Science (submitted)Google Scholar
  54. Sauer R, Seifert P, Wessely G (1992) Guidebook to excursions in the Vienna Basin and the adjacent Alpine–Carpathian thrustbelt in Austria. Mitt Österr Geol Ges 85:1–264Google Scholar
  55. Schaffer FX (1927) Der Begriff der “miozänen Mediterranstufen” ist zu streichen. Verh Geol Bundesanst 1927:86–88Google Scholar
  56. Schmieder F (2006) Magentic signals in Plio–Pleistocene sediments of the South Atlantic: implications for chronostratigraphy and paleoceanography. Geophys Res Abstr 8:07269Google Scholar
  57. Schulz M, Berger WH, Sarnthein N, Grootes PM (1999) Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys Res Lett 26:3385–3388CrossRefGoogle Scholar
  58. Seifert P (1996) Sedimentary-tectonic development and Austrian hydrocarbon potential of the Vienna Basin. In: Wessely G., Liebl W (eds) Oil and gas in Alpidic thrustbelts and basins of Central and Eastern Europe. EAGE Spec Publ 5:331–341Google Scholar
  59. Selge A (2005) Zyklostratigraphie anhand mineralmagnetischer Parameter am Bohrkern Sooß aus dem mittleren Badenium (Mittel Miozän)/Baden (Wiener Becken, Österreich). Dipl thesis, University of Leoben, 70 ppGoogle Scholar
  60. Shevenell AE, Kenett JP, Lea DW (2004) Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770CrossRefGoogle Scholar
  61. Smith AB, Crimes TP (1983) Trace fossils formed by heart urchins—a study of Scolicia and related traces. Lethaia 16:79–92CrossRefGoogle Scholar
  62. SPSS 15.0 for Windows (2006) Release 15.0.0. SPSS Inc.Google Scholar
  63. Steininger FF, Wessely G (2000) From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene basin evolution in Austria. Mitt Österr Geol Ges 92:95–116Google Scholar
  64. Stradner H, Fuchs R (1978) Das Nannoplankton in Österreich. In: Papp A, Cicha I, Seneš J, Steininger F (eds) M4 Badenien (Moravien, Wielicien, Kosovien). Chronostrat and Neostrat 6:489–531 (Veda SAV, Bratislava)Google Scholar
  65. Švábenická L (2002) Calcareous nannofossils of the upper Karpatian and lower Badenian deposits in the Carpathian Foredeep, Moravia (Czech Republic). Geol Carp 53:197–210Google Scholar
  66. Strauss PE, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carp 57:185–197Google Scholar
  67. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  68. Wagreich M, Schmid HP (2002) Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova 14:163–168CrossRefGoogle Scholar
  69. Weissenbäck M (1996) Lower to Middle Miocene sedimentation model of the central Vienna Basin. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Spec Publ 5:255–363Google Scholar
  70. Yamazaki T, Oda H (2002) Orbital influence on Earth’s magnetic field: 100,000-year periodicity in inclination. Science 295:2435–2438CrossRefGoogle Scholar
  71. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey, 63 ppGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Hohenegger
    • 1
  • S. Ćorić
    • 2
  • M. Khatun
    • 3
  • P. Pervesler
    • 1
  • F. Rögl
    • 4
  • C. Rupp
    • 2
  • A. Selge
    • 5
  • A. Uchman
    • 6
  • M. Wagreich
    • 3
  1. 1.Department of PalaeontologyUniversity of ViennaViennaAustria
  2. 2.Geological Survey of AustriaViennaAustria
  3. 3.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria
  4. 4.Natural History Museum ViennaViennaAustria
  5. 5.Paleomagnetic Laboratory GamsInstitute of GeophysicsMU LeobenAustria
  6. 6.Institute of Geological SciencesJagiellonian UniversityKrakówPoland

Personalised recommendations