International Journal of Earth Sciences

, Volume 98, Issue 3, pp 697–705 | Cite as

The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben

  • J. R. R. RitterEmail author
  • M. Wagner
  • K.-P. Bonjer
  • B. Schmidt
Original Paper


We determine the source parameters of three minor earthquakes in the Upper Rhine Graben (URG), a Cenozoic rift, using waveforms from permanent and temporary seismological stations. Two shallow thrust-faulting events (M L = 2.4 and 1.5) occurred on the rift shoulder just south of Heidelberg in March 2005. They indicate a possible movement along the sediment–crystalline interface due to tectonic loading from the near-by Odenwald. In February 2005, an earthquake with a normal-faulting mechanism occurred north of Speyer. This event (M L = 2.8) had an unusual depth of about 22 km and a similar deep normal-faulting event occurred there in 1972 (M L = 3.2). Other lower crustal events without fault plane solutions are known from 1981 and 1983. At such a depth, inside the lower crust, ductile behaviour instead of brittle faulting is commonly assumed and used for geodynamic modelling. Based on the newly available fault plane solutions we can confirm the brittle, extensional regime in the upper and lower crust in the central to northern URG indicated in earlier studies.


Seismicity Fault plane solution Upper Rhine Graben Tectonics 



Seismic waveform data were provided by the Landeserdbebendienst (LED) Baden-Württemberg, the Landeserdbeben-Registrierung (LER) Rheinland-Pfalz, the Hessischer Erdbebendienst (HED), the German Regional Seismic Network (GRSN) through its database at the SZGRF, RENASS (Strasbourg) and GEOFON (Potsdam). W. Scherer and H. Thomas helped with maintenance of the TIMO network which was funded by the Geophysical Institute of the Universität Karlsruhe (TH). Numerous people supported the TIMO experiment by providing safe space for the instruments. G. Peters provided digital data of faults from the northern Rhine Graben. SeismicHandler (Stammler 1993) was used for seismic data analysis and GMT (Wessel and Smith 1998) for plotting maps. We thank Prof. Dr. R. Greiling (Karlsruhe), Prof. Dr. N. Harthill (Karlsruhe) and Dr. S. Stange (Freiburg) for comments on an earlier version of the manuscript. Dr. I. Wölbern and Dr. T. Plenefisch provided useful reviews to clarify some points.


  1. Ahorner L, Schneider G (1974) Herdmechanismen von Erdbeben im Oberrhein-Graben und in seinen Randgebieten. In: Illies JH, Fuchs K (eds) Approaches to taphrogenesis, Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp 104–117Google Scholar
  2. Bankwitz P, Bankwitz E, Thomas R, Wemmer K, Kämpf H (2004) Age and depth evidence for pre-exhumation joints in granite plutons: fracturing during the early cooling stage of felsic rock. In: Cosgrove JW, Engdelder T (eds) The initiation, propagation and arrest of joints and other fractures, Geol. Soc. Lond, Spec. Pub, vol 231, pp. 25–47Google Scholar
  3. Bonjer K-P (1997a) Seismicity pattern and style of seismic faulting at the eastern borderfault of the southern Rhine Graben. Tectonophysics 275:41–69CrossRefGoogle Scholar
  4. Bonjer K-P (1997b) nrift.34 catalogue, Geophysical Institute, Universität Karlsruhe (TH), internal reportGoogle Scholar
  5. Bonjer K-P, Gelbke C, Gilg B, Rouland D, Mayer-Rossa D, Massinon B (1984) Seismicity and dynamics of the Upper Rhinegraben. J Geophys 55:1–12Google Scholar
  6. Brüstle W, Stange S (2006) Seismisches Bulletin Baden-Württemberg 2005. Freiburg,
  7. Deichmann N (1987) Focal depths of earthquakes in northern Switzerland. Ann Geophys 4:395–402Google Scholar
  8. Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33CrossRefGoogle Scholar
  9. Edel J-B, Whitechurch H, Diraison M (2006) Seismicity wedge beneath the Upper Rhine Graben due to backwards Alpine push? Tectonophysics 428:49–64CrossRefGoogle Scholar
  10. Geyer OF, Gwinner MP (1968) Einführung in die Geologie von Baden-Württemberg. Schweitzerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  11. Harthill N, Hecht C, Bruss D (2006) The internal geological structure of the Mittlerer Oberheingraben, Abstract. Jahrestagung der Geothermischen Vereinigung, KarlsruheGoogle Scholar
  12. Leydecker G (2005) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800–2004. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, datafile:
  13. Lichtenberger M (2006) Underground measurements of electromagnetic radiation related to stress-induced fractures in the Odenwald Mountains (Germany). Pure Appl Geophys 163:1661–1677CrossRefGoogle Scholar
  14. Meier L, Eisbacher GH (1991) Crustal kinematics and deep structure of the northern Rhine Graben, Germany. Tectonics 10:621–630CrossRefGoogle Scholar
  15. Müller B, Wehrle V, Zeyen H, Fuchs K (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics 275:199–219CrossRefGoogle Scholar
  16. Peters G, van Bahlen RT (2007) Tectonic morphology of the northern Upper Rhine Graben, Germany. Glob Planet Change 58:310–338CrossRefGoogle Scholar
  17. Plenefisch T, Bonjer K-P (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics 275:71–97CrossRefGoogle Scholar
  18. Plešinger A, Hellweg M, Seidl D (1986) Interactive high-resolution polarization analysis of broad-band seismograms. J Geophys 59:129–139Google Scholar
  19. Reyners M, Eberhardt-Phillips D, Stuart D (2007) The role of fluids in lower-crustal earthquakes near continental rifts. Nature 446:1075–1078CrossRefGoogle Scholar
  20. Schneider G (1964) Die Erdbeben in Baden-Württemberg 1955–1962. Veröffentlichungen des Landeserdbebendienstes Baden-Württemberg, StuttgartGoogle Scholar
  21. Schneider G (1968) Erdbeben und Tektonik in Südwest-Deutschland. Tectonophysics 5:459–511CrossRefGoogle Scholar
  22. Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci 94:732–750CrossRefGoogle Scholar
  23. Schweitzer J (2001) HYPOSAT—an enhanced routine to locate seismic events. Pure Appl Geophys 158:277–289CrossRefGoogle Scholar
  24. Snoke JA (2003a) FOCMEC: FOCal MEChanism determinations. Int Handb Eng Seismol 81B:29–30Google Scholar
  25. Snoke JA (2003b) FOCMEC: FOCal MEChanism determinations, Handbook, 21pGoogle Scholar
  26. Stammler K (1993) SeismicHandler—programmable multichannel data handler for interactive and automatic processing of seismological analysis. Comp Geosci 19:135–140CrossRefGoogle Scholar
  27. Stange S (2006) ML determination for local and regional events using a sparse network in Southwestern Germany. J Seismol. doi:  10.1007/s10950-006-9010-6
  28. Stange S, Brüstle W (2005) The Albstadt/Swabian Jura seismic source zone reviewed through the study of the earthquake of March 22 2003. Jber Mitt Oberrhein Geol Ver 87:391–414Google Scholar
  29. Strehlau J, Stange S (2006) Earthquakes in the lower crust under the Northern Alpine Foreland Basin: Seismological detection of active metamorphism? Geophys Res Abstr 8:EGU06-A-08420Google Scholar
  30. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos, Trans Am Geophys Union 79:579CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. R. R. Ritter
    • 1
    Email author
  • M. Wagner
    • 1
  • K.-P. Bonjer
    • 1
  • B. Schmidt
    • 2
  1. 1.Geophysical InstituteUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Landesamt für Geologie und Bergbau Rheinland-PfalzMainz-HechtsheimGermany

Personalised recommendations