Advertisement

International Journal of Earth Sciences

, Volume 97, Issue 5, pp 1045–1056 | Cite as

Solution-precipitation creep and fluid flow in halite: a case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany)

  • Zsolt Schléder
  • János L. Urai
  • Sofie Nollet
  • Christoph Hilgers
Original Paper

Abstract

Zechstein (Z1) rocksalt from the Fulda basin, from the immediate vicinity of the Hessen potash bed is folded into tight to isoclinal folds which are cut by an undeformed, 1 cm thick, coarse-grained halite vein. Microstructures were investigated in etched, gamma-irradiated thin sections from both the wall rock and the vein. The lack of synsedimentary dissolution structures and the widespread occurrence of plate-shaped and hopper grains in the wall-rock suggests that the sedimentary environment was perennial lake. Deformation microstructures are in good agreement with solution-precipitation creep process, and salt flow under very low differential stress. Strength contrast between anhydrite-rich and anhydrite-poor layers caused the small scale folding in the halite beds. The vein is completely sealed and composed mainly of euhedral to subhedral halite grains, which often overgrow the wall-rock grains. Those microstructures, together with the presence of occasional fluid inclusion bands, suggest that the crystals grew into a solution-filled open space. Based on considerations on the maximum value of in-situ differential stress, the dilatancy criteria, the amount of released fluids from the potash bed during metamorphism and the volume change, it is proposed that the crack was generated by hydrofracturing of the rocksalt due to the presence of the salt-metamorphic fluid at near-lithostatic pressure.

Keywords

Halite Potash salt Deformation mechanism Hydrofracture 

Notes

Acknowledgments

The authors thank R. Stax (K+S Salz GmbH) for providing the samples and M. Thomé (Forschungszentrum Jülich) for carrying out the gamma-irradiation. Reviews of P.D. Bons and Y. Maystrenko improved the manuscript. This work was performed as part project of SPP 1135 (project UR 64/5-1-2) financed by the Deutsche Forschungsgemeinschaft.

References

  1. Adams LH (1931) Equilibrium in binary systems under pressure. I. An experimental and thermodynamic investigation of the system NaCl-H2O at 25°C. J Am Chem Soc 53:3769–3813CrossRefGoogle Scholar
  2. Baar CA (1959) Über gleichartige Gebirgsverformungen durch bergmännischen Abbau von Kaliflözen bzw. durch chemische Umbildung von Kaliflözen in geologischer Vergangenheit. Freiberger Forsch.-H, pp 137–159Google Scholar
  3. Baumert B (1928) Über Laugen- und Wasserzuflüsse im Deutschen Kalibergbau, RWTH AachenGoogle Scholar
  4. Becker F (2002) Zechsteinkalk und Unterer Werra-Anhydrit (Zechstein 1) in Hessen: Fazies, Sequenz-stratigraphie und Diagenese. Geologische Abhandlungen Hessen 109:1–231Google Scholar
  5. Beer WW (1996) Kalilagerstätten in Deutschland. Kali und Steinsalz 12(Heft 1):18–30Google Scholar
  6. Bons P (1993) Experimental deformation of polyphase rock analogues. Unpublished PhD thesis, University of Utrecht, UtrechtGoogle Scholar
  7. Bons P (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336:1–17CrossRefGoogle Scholar
  8. Bons P, Jessell MW (1997) Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep. Mineral Mag 61:53–63CrossRefGoogle Scholar
  9. Borchert H, Muir RO (1964) Salt deposits. The origin, metamorphism and deformation of evaporites. D. van Nostrand Company Ltd., London, p 338Google Scholar
  10. Casas E, Lowenstein TK (1989) Diagenesis of saline pan halite: comparison of petrographic features of modern, Quaternary and Permian halites. Sediment Petrol 59(5):724–739Google Scholar
  11. Durney DW, Ramsay JG (1973) Incremental strains measured by syntectonic crystal growths. In: De Jong KA, Scholten R (eds) Gravity and tectonics. Wiley, New York, pp 67–96Google Scholar
  12. Fischbeck R, Bornemman O (1988) Genetische Überlegungen aufgrund von Brom-Bestimmungen an halitischen Kluftfüllungen is Salzgesteinen des Salzstocks Gorleben, Niedersachsen. Fortschritte der Mineralogie 66(1):35Google Scholar
  13. Fisher DM, Brantley SL (1992) Models of quartz overgrowth and vein formation: deformation and episodic fluid flow in an ancient subduction zone. J Geophys Res 97:20043–20061CrossRefGoogle Scholar
  14. Fokker PA (1995) The behaviour of salt and salt caverns. Unpublished PhD thesis, TU Delft, DelftGoogle Scholar
  15. Gottesmann W (1963) Eine häufig auftretende Struktur des Halits im Kaliflöz, Stassfurt. Geologie 12(5):576–581Google Scholar
  16. Handford RC (1990) Halite depositional facies in a solar salt pond: a key to interpreting physical energy and water depth in ancient deposits? Geology 18:691–694CrossRefGoogle Scholar
  17. Herrmann AG (1981) Grundkenntnisse über die Entstehung mariner Salzlagerstätten. Der Aufschluss—Zeitschrift für Freunde der Mineralogie und Geologie Jh. 32(Feb 1981):1–72Google Scholar
  18. Herrmann AG, Knipping B (1989) Stoffbestand von Salzstöcken und Langzeitsicherheit für Endlager radioaktiver Abfälle. PTB informiert: Fachbeiträge zur Sicherstellung und zur Endlagerung radioaktiver Abfälle 1(89):2–50Google Scholar
  19. Hickman SH, Evans B (1991) Experimental pressure solution in halite; the effect of grain/interphase boundary structure. J Geol Soc Lond 148:549–560CrossRefGoogle Scholar
  20. Hilgers C (2000) Vein growth in fractures—experimental, numerical and real rock studies. Unpublished PhD thesis, RWTH Aachen, AachenGoogle Scholar
  21. Hilgers C, Koehn D, Bons P, Urai JL (2001) Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins. J Struct Geol 23:873–885CrossRefGoogle Scholar
  22. Hoppe W (1960) Die Kali- und Stensalzlagerstätten des Zechsteins in der Deutschen Demokratischen Republik. Teil 1: Das Werra-Gebiet. Freiberger Forsch.-H. C 97(I):166Google Scholar
  23. Jahne H, Oettel S, Voitel R (1970) Die feinstratigrapische Gliederung des Salinars im Zechstein 1 des Werra-Kaligebietes. Ber deutsch Ges geol Wiss A Geol Paläont 15(4):505–515Google Scholar
  24. Jowett EC, Cathles LM, Davis BW (1993) Predicting depths of gypsum dehydration in evaporitic sedimentary basins. Am Assoc Pet Geol Bull 77(3):402–413Google Scholar
  25. Knipping B, Herrmann AG (1985) Mineralreaktionen und Stofftransporte an einem Kontakt Basalt-Carnallitit in Kalisalzhorizont Thüringen der Werra-Series des Zechsteins. Kali un Steinsalz 9:111–124Google Scholar
  26. Käding KC, Sessler W (1994) Befahrung Kalibergwerkes Neuhof-Ellers der Kali und Steinsaz AG bei Fulda (Exkursion G am 8. April 1994). Jber Mitt oberrhein geol Ver 76:191–197Google Scholar
  27. Kühn R (1957) Führung durch das Kalibergwerk Neuhof-Ellers, obere Sohle, nebst einigen Beiträgen zur Petrographie des Werra-Fulda-Kalireviers. Fortschritte der Mineralogie 35:60–120Google Scholar
  28. Leammlen M (1970) Geologische Karte von Hessen 1:25000 mit Erläuterungen. Blatt Nr. 5523 Neuhof, Wiesbaden, Germany, Google Scholar
  29. Lewis S, Holness M (1996) Equuilibrium halite-H2O dihedral angles: high rock-salt permeability in the shallow crust? Geology 24(5):431–434CrossRefGoogle Scholar
  30. Lockhorst A (ed) (1998) NW European gas atlas-composition and isotope ratios of natural gases. GIS application on CD-ROM by the British Geological Survey, Bundesanstalt für Geowissenschaften und Rohstoffe, Danmarks og Gronlands Geologiske, Undersogelse, Netherlands Instituut voor Toegepaste geowetenschappen, Panstwowy Instytut Geologiczny, European UnionGoogle Scholar
  31. Lohkämper THK, Jordan G, Costamagna R, Stöckhert B, Schmahl WW (2003) Phase shift interference microscope study of dissolution-precipitation processes of nonhydrostatically stressed halite crystals in solution. Contrib Mineral Petrol 146(3):263–274CrossRefGoogle Scholar
  32. Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644CrossRefGoogle Scholar
  33. Lowenstein TK, Spencer RJ (1990) Syndepositional origin of potash evaporites: petrographic and fluid inlcusion evidence. Am J Science 290:1–42CrossRefGoogle Scholar
  34. Lux K-H (2005) Long-term behaviour of sealed liquid-filled salt cavities—a new approach for physical modelling and numerical simulation—basics from theory and lab investigations. Erdöl Erdgas Kohle 121:414–422Google Scholar
  35. Means WD, Ree JH (1988) Seven types of subgrain boundaries in octachloropropane. J Struct Geol 10:765–770CrossRefGoogle Scholar
  36. Murata KJ, Smith RL (1946) Manganese and lead coactivators of red fluorescence in halite. Am Mineral 31:527–538Google Scholar
  37. Mügge O (1928) Über die Entstehung faseriger Minerale und ihrer Aggregationsformen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 58A:303–348Google Scholar
  38. Nollet S (2005) Fracture sealing processes in sedimentary basins—a multi-scale approach. Unpublished PhD thesis, RWTH Aachen, AachenGoogle Scholar
  39. Nollet S, Hilgers C, Urai J (2005a) Sealing of fluid pathways in overpressure cells—a case study from the Buntsandstein in the Lower Saxony Basin (NW Germany). Int J Earth Sci 94(5–6):1039–1056CrossRefGoogle Scholar
  40. Nollet S, Urai JL, Bons PD, Hilgers C (2005b) Numerical simulations of polycrystal growth in veins. J Struct Geol 27(2):217–230CrossRefGoogle Scholar
  41. Oesterle FP, Lippolt HJ (1975) Isotopische datierung der Langbeinitbildung in der Kalisalzlagerstätte des Fuldabeckens. Kali und Steinsalz 6:391–398Google Scholar
  42. Peach CJ, Spiers CJ, Trimby PW (2001) Effect of confining pressure on dilatation, recrystallization, and flow of rock salt at 150°C. J Geophys Res 106(B7):13315–13328CrossRefGoogle Scholar
  43. Popp T, Kern H, Schulze O (2001) Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. J Geophys Res 106(B3):4061–4078CrossRefGoogle Scholar
  44. Przibram K (1954) Irradiation colours in minerals. Endeavour 13(49):37–41Google Scholar
  45. Roedder E (1984) The fluids in salt. Am Mineral 69:413–439Google Scholar
  46. Roth H (1955) Ausbildung und Lagerungsformen des Kaliflöz “Hessen” im Fuldagebiet. Z deutsch geol Ges 105(4):674–684Google Scholar
  47. Roth H (1957) Befahrung des Kalisalzbergwerkes “Wintershall” der Gewerkscahft Wintershall in Heringen/Werra. Fortschr Miner 35(1):82–88Google Scholar
  48. Schenk O, Urai JL (2004) Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of sodium chloride containing saturated brine. Contrib Mineral Petrol 146:671–682CrossRefGoogle Scholar
  49. Schléder Z, Urai JL (2005) Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int J Earth Sci 94:941–955CrossRefGoogle Scholar
  50. Schoenherr J, Janos L, Urai, Peter A. Kukla, Ralf Littke, Zsolt Schléder, Jean-Michel Larroque, Mark J. Newall, Nadia Al-Abry, Hisham A. Al-Siyabi, Zuwena Rawahi (2007) Limits to the sealing capacity of halite: a case study of the Infra-Cambrian Ara Salt from the South Oman Salt Basin. AAPG Bull 91(11):1541–1557Google Scholar
  51. Shearman DJ (1970) Recent halite rock, Baja California, Mexico. Transaction of Mining and Metall 79B:155–162Google Scholar
  52. Siemann MG, Ellendorff B (2001) The composition of gases in fluid inclusions of late Permian (Zechstein) marine evaporites in Northern Germany. Chem Geol 173(1–3):31–44CrossRefGoogle Scholar
  53. Siemann MG, Schramm M (2002) Henry’s and non-Henry’s law behavior of Br in simple marine systems. Geochim Cosmochim Acta 66(8):1387–1399CrossRefGoogle Scholar
  54. Skowronek F, Fritsche J-G, Aragon U, Rambow D (1999) Die Versenkung und Ausbreitung von Salzabwasser im Untergrund des Werra-Kaligebiets. Geologische Abhandlungen Hessen 105:1–83Google Scholar
  55. Spiers CJ, Schutjens P (1990) Densification of crystalline aggregates by fluid phase diffusional creep. In: Barber DJ, Meredith PD (eds) Deformation processes in minerals, ceramics and rocks. Unwin Hyman, pp 334–353Google Scholar
  56. Spiers CJ, Schutjens PMTM, Brzesowsky RH, Peach CJ, Liezenberg JL, Zwart HJ (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: Knipe RJ, Rutter EH (Eds) Deformation mechanisms, rheology and tectonics geological society of London special publication, vol. 54, pp. 215–227Google Scholar
  57. Thijssen JM (1995) Simulation of polycrystalline growth in 2 + 1 dimensions. Phys Rev Lett 51:1985–1988Google Scholar
  58. Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature (London) 324(6097):554–557CrossRefGoogle Scholar
  59. Urai JL, Spiers CJ, Peach C, Franssen RCMW, Liezenberg JL (1987) Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geologie en Mijnbouw 66:165–176Google Scholar
  60. van Suchtelen J (1995) The geometry of crystal growth. In: Sunagawa I (Ed) Morphology of crystals. Kluwer, Dordrecht, p 419Google Scholar
  61. Wallner M (1986) Frac-pressure risk in rock salt. In: SMRI Autumn Meeting, Amsterdam, The Netherlands, 21–24 September, pp 1–14Google Scholar
  62. Warren J (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Heidelberg, p 1036Google Scholar
  63. Weiss MH (1980) Möglichkeiten der entstehung sowie art, umfang und Tektonische stellung von Rissen und Klüften in Slazgebirge. GSF Bericht T–200Google Scholar
  64. Werner D, Doebl F (1974) Eine geothermische Karte des Rheingrabenuntergrundes, No. 8Google Scholar
  65. Wilkins RWT, Bird JR (1980) The use of proton irradiation to reveal growth and deformation features in fluorite. Am Mineral 65:374–380Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Zsolt Schléder
    • 1
    • 2
  • János L. Urai
    • 1
  • Sofie Nollet
    • 1
    • 3
  • Christoph Hilgers
    • 1
  1. 1.Geologie-Endogene Dynamik, RWTH AachenAachenGermany
  2. 2.Midland Valley Exploration LtdGlasgowUK
  3. 3.ExxonMobil Upstream Research CompanyHoustonUSA

Personalised recommendations