International Journal of Earth Sciences

, Volume 98, Issue 3, pp 571–583 | Cite as

Intrusion versus inversion—a 3D density model of the southern rim of the Northwest German Basin

  • Filiz Bilgili
  • Hans-Jürgen Götze
  • Roman Pašteka
  • Sabine Schmidt
  • Ron Hackney
Original Paper


An unsolved problem of regional importance for both the evolution and structure of the Northwest German Basin is the existence or non-existence of the so-called Bramsche Massif. Explaining the nature of this massif and the cause of a related strong, positive Bouguer anomaly (Bramsche Anomaly) is critical. In the study described here, we tested an existing “intrusion model” against a newer “inversion model” in the southern Northwest German Basin. In the intrusion model, the strongly-positive Bouguer anomaly represents the gravity effect of an intrusion at depths between 6 and 10 km. More recent interpretations invoke tectonic inversion rather than intrusion to explain increased burial and the low level of hydrocarbon maturity found in boreholes. We tested these different interpretations by constructing 3D forward density models to 15 km depth. The intrusion model was updated and adjusted to incorporate recent data and we also modelled pre-Zechstein structures using different scenarios. The final model has a very good fit between measured and modelled gravity fields. Based on currently available seismic and structural models, as well as borehole density measurements, we show that the positive Bouguer anomaly cannot be modeled without a high-density, intrusive-like body at depth. However, further in-sight into the crustal structures of the Bramsche region requires more detailed investigations.


3D gravity modelling Bramsche anomaly Geotectonic Atlas Northwest German Basin Geoinformation system 



The work presented here is part of the project “Intrusion vs. inversion at the rim of the NWGB: the gravity high of Bramsche revisited. 3D structural modelling by the aid of the Digital Tectonic Atlas” (GO 380/23-1) funded by the Deutsche Forschungsgemeinschaft as part of the priority program SPP1135. We thank the section “Seismik und Potentialverfahren” of the GGA (Hannover) for providing gravity and magnetic data and our colleagues from SPP1135 for discussions and ongoing interest. We thank B. Meurers (Vienna, Austria) for his useful comments and suggestions, and Andrea Lippmann for initial preparation of data sets at the beginning of this project. R. Pašteka expresses thanks for financial support from the Slovak Ministry of Education (projects APVT-51-002804 and VEGA 1/3066/06).

Supplementary material

531_2007_267_MOESM1_ESM.tif (17.5 mb)
Fig. A-1: Model I. Left: Map view of measured and modelled Bouguer gravity. Right: statistics for the difference between measured and modelled gravity. The upper part shows a map of the differences between the measured and the calculated anomaly (residual map) and the lower part shows a histogram of these differences, their standard deviation (6.91×10-5 m/s2) and the correlation coefficient between both fields (0.67). (TIF 17.5 mb)
531_2007_267_MOESM2_ESM.tif (2.7 mb)
Fig. A-2: Model II. Left: Map view of measured and modelled Bouguer gravity. Right: statistics for difference between measured and modelled gravity (residual map, histogram, correlation coefficient of 0.55, standard deviation of 7.85×10-5 m/s2). (TIF 2.73 mb)
531_2007_267_MOESM3_ESM.tif (2.7 mb)
Fig. A-3: Model III. Left: Map view of measured and modelled Bouguer gravity. Right: statistics for difference between measured and modelled gravity (residual map, histogram, correlation coefficient of 0.85 and standard deviation of 4.85×10-5 m/s2). (TIF 2.74 mb)


  1. Bachmann GH, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens—geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. Das Norddeutsche Becken, Heft 2 Nds Akad Geowiss Veröff, Hannover, pp 23–47Google Scholar
  2. Bachmann GH, Bayer U, Dürbaum HJ, Hoffmann N, Krawczyk CM, Lück E, McCann T, Meissner R, Meyer H, Oncken O, Polom U, Prochnow U, Rabbel W, Scheck M, Stiller M (1999) Deep crustal structure of the Northeast German basin: new DEKORP-BASIN 96 deep-profiling results. Geology 27(1):55–58CrossRefGoogle Scholar
  3. Baldschuhn R, Binot F, Fleig, S, Kockel F (eds) (2001) Geotektonischer Atlas von NW-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol Jahrbuch (A), vol 153Google Scholar
  4. Bayer U, Scheck M, Rabbel W, Krawczyk C, Götze HJ, Stiller M, Beilecke T, Marotta AM, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE German Basin. Tectonophysics 314:285–307CrossRefGoogle Scholar
  5. Brauner HJ (1996) Neubearbeitung und Reinterpretation seismischer Weitwinkeldaten. Unpublished Thesis, Universität KielGoogle Scholar
  6. Breunig M, Cremers AB, Götze HJ, Schmidt S, Seidemann R, Shumilov S, Siehl A (1999) First steps towards an interoperable GIS—an example from southern Lower Saxony. Phys Chem Earth (A) 24/3:179–190CrossRefGoogle Scholar
  7. Breunig M, Cremers AB, Götze HJ, Schmidt S, Seidemann R, Shumilov S, Siehl A (2000) Geological mapping based on 3D models using an interoperable GIS (geo-information-systems). J Spat Inf Decis Mak 13:12–18. ISSN 0935–1523Google Scholar
  8. Brink HJ, (2002) The Bramsche-massif anomalies—again an open question? Erdöl Erdgas Kohle 118:18–22Google Scholar
  9. Brockamp B (1967) Kurzbereicht über die im Gebiet um Osnabrück durchgeführten seismischen Arbeiten des Instituts für Reine und Angewandte Geophysik der Universität Münster. Veröffentlichung der Deutschen Geodätischen Komission Heft 153(Reihe B):1–12Google Scholar
  10. Cooper GRJ (2004) Euler deconvolution applied to potential field gradients. Explor Geophys 35:165–170CrossRefGoogle Scholar
  11. Dohr G (1989) Ergebnisse geophysikalischer Arbeiten zur Untersuchung des tieferen Untergrundes in Norddeutschland. Nds Akad Geowiss Veröfftl Heft 2:4–47Google Scholar
  12. Fitzgerald D, Reid A, McInerney Ph (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30:461–469CrossRefGoogle Scholar
  13. Giebeler-Degro M (1986) Zur Tiefenerkundung des Niedersächsischen Tektogens durch dreidimensionale Simulationsrechnungen. Unpublished Thesis, TU ClausthalGoogle Scholar
  14. Götze HJ (1976) Ein numerisches Verfahren zur Berechnung der gravimetrischen und magnetischen Feldgrößen für dreidimensionale Modellkörper. Unpublished Thesis, TU Clausthal Clausthal-ZellerfeldGoogle Scholar
  15. Götze HJ, (1984) Über den Einsatz interaktiver Computergraphik im Rahmen 3-dimensionaler Interpretationstechniken in Gravimetrie und Magnetik. Unpublished Thesis, TU ClausthalGoogle Scholar
  16. Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53(8):1096–1108CrossRefGoogle Scholar
  17. Hoffmann N, Stiewe H (1994) Neuerkenntnisse zur geologisch-geophysikalischen Modellierung der Pritzwalkanomalie im Bereich des Ostelbischen Massivs. Zeitschrift geologischer Wissenschaften 22:161–171Google Scholar
  18. Hoffmann N, Jödicke H, Horejschi L (2005) Regional distrubution of the lower Carboniferous culm and Carboniferous limestone facies in the North German Basin—derived from magnetotelluric soundings. Z dt Ges Geowiss 156:323–339Google Scholar
  19. Inselmann R (1985) Dichte-Messungen in der Bundesrepublik Deutschland. Erdöl-Erdgas 101(3):76–78Google Scholar
  20. Kuder J (2002) 3D Schwerefeldmodellierung zur Erfassung des tiefen Untergrundes im Nordost-Deutschen Becken. Doctoral Thesis FB Geowissenschaften FU Berlin
  21. Ludwig JW, Nafe JE, Drake CL (1970) Seismic refraction. In: The sea Bd 4. Wiley, New York, pp 53–84Google Scholar
  22. Nafe JE, Drake CL (1963) Physical properties of marine sediment. In: The sea Bd 3. New York, pp 784–815Google Scholar
  23. Pašteka R, Richter P (2002) A simple approach to regularised gradients calculation in gravimetry and magnetometry. Extended abstracts from 63rd EAGE Conference EAGE 64th conference and exhibition, Firenze, p 118Google Scholar
  24. Pašteka R, Richter P (2005) Improvement of the Euler deconvolution algorithm by means of the introduction of regularized derivatives. Geophys Geod 35(1):19–32Google Scholar
  25. Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344CrossRefGoogle Scholar
  26. Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91CrossRefGoogle Scholar
  27. Scheibe R, Seidel K, Vormbaum M, Hoffmann N (2005) Magnetic and gravity modelling of the crystalline basement in the North German Basin. Z dt Ges Geowiss 156:291–298Google Scholar
  28. Schmidt S, Götze HJ (1999) Integration of data constraints and potential field modelling—an example from southern Lower Saxony, Germany. Phys Chem Earth (A) 24(3):191–196CrossRefGoogle Scholar
  29. Senglaub Y, Littke R and Brix MR (2005) Numerical modelling of burial and temperature history as an approach for an alternative interpretation of Bramsche anomaly Lower Saxony Basin. Int J. Earth Sci (Geol. Rundschau).  doi:10.1007/s0051-005-0008-z
  30. Sobolev S, Babeyko AY (1994) Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surv Geophys 15:515–544CrossRefGoogle Scholar
  31. Thompson DT (1982) EULDPH A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Filiz Bilgili
    • 1
  • Hans-Jürgen Götze
    • 1
  • Roman Pašteka
    • 2
  • Sabine Schmidt
    • 1
  • Ron Hackney
    • 1
  1. 1.Department of GeophysicsUniversity Kiel, Inst. for GeosiencesKielGermany
  2. 2.Department of Applied and Environmental GeophysicsComenius UniversityBratislavaGermany

Personalised recommendations