Advertisement

International Journal of Earth Sciences

, Volume 98, Issue 3, pp 665–676 | Cite as

Identifying low-temperature hydrothermal karst and palaeowaters using stable isotopes: a case study from an alpine cave, Entrische Kirche, Austria

  • Christoph SpötlEmail author
  • Yuri Dublyansky
  • Michael Meyer
  • Augusto Mangini
Original Paper

Abstract

The area south of the prominent east–west trending Salzach Valley at the northern rim of the Central Alps of Austria has long been known to host anomalously warm springs emerging from a highly deformed calcite marble (Klammkalk). This unit also hosts cavities whose shapes suggest a hydrothermal karst origin and which are lined by calcite spar. We report here petrographic and isotopic evidence suggesting that dissolution by ascending low-temperature thermal waters also played an important role in the origin of a large cave in this region, Entrische Kirche. A paleo cave wall, preserved behind a thick flowstone in the interior of this cave, revealed a brownish bleaching zone which contrasts to the medium grey colour of the unaltered marble beneath. Across this zone the C and O isotope values gradually decrease by 3 and 11‰, respectively. These compositions are very different from those of the speleothem above but are similar to phreatic calcite spar from hydrothermal karst cavities in other outcrops in the area, where the absence of two-phase fluid inclusions suggests a low-temperature (less than ca. 50°C) hydrothermal origin. U/Th dating of the flowstone capping the alteration zone yielded a minimum age of the thermal water invasion in Entrische Kirche of ca. 240 kyr. There is no evidence in Entrische Kirche that these palaeowaters reached the point of calcite precipitation, but it is physically conceivable that higher and as yet unexplored parts of this deep (ca. 900 m) cave contain cavities lined by phreatic cave spar.

Keywords

Hydrothermal karst Stable isotopes Cave Water/rock interaction Austria 

Notes

Acknowledgments

The Amt der Salzburger Landesregierung, Abteilung Naturschutz granted permission to study and sample speleothems for Entrische Kirche. We are grateful to R. Erlmoser and E. Frank for their help in the cave, to J. Reiterer, J. Kaml and J. Ratgeb for kindly providing samples, to W. Gadermayr for discussion and useful hints, to M. Wimmer for preparing the samples for isotopic analysis, to R. Bakker for his help with the fluid-inclusion analyses, to editor W.-C. Dullo and an anonymous referee for comments on an earlier version of the manuscript and to the FWF for financial support (grants Y122-GEO and P18207-N10).

References

  1. Bakalowicz MJ, Ford DC, Miller TE, Palmer AN, Palmer MV (1987) Thermal genesis of dissolution caves in the Black Hills, South Dakota. Geol Soc Am Bull 99:729–738CrossRefGoogle Scholar
  2. Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137CrossRefGoogle Scholar
  3. Becke F (1902) Calcit vom oberen Klammtunnel an der Strecke Schwarzach-St.Veit–Gastein der Tauernbahn. Tschermaks Min Petrogr Mitt 21:460Google Scholar
  4. Beyerle U, Purtschert R, Aeschbach-Hertig W, Imboden DM, Loosli HH, Wieler R, Kipfer R (1998) Climate and groundwater recharge during the Last Glaciation in an ice-covered region. Science 282:731–734CrossRefGoogle Scholar
  5. Bottrell SH, Crowley S, Self C (2001) Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization. Geofluids 1:1103–1121CrossRefGoogle Scholar
  6. Braunstingl R (2005) Geologische Karte von Salzburg 1:200000. Geologische Bundesanstalt, ViennaGoogle Scholar
  7. Budd DA, Hammes U, Ward WB (2000) Cathodoluminescence in calcite cements: new insights on Pb and Zn sensitizing, Mn activation, and Fe quenching at low trace-element concentrations. J Sed Res 70:217–226CrossRefGoogle Scholar
  8. Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev. Mineral., vol 16. Am. Mineral. Soc., Blacksburg, pp 373–424Google Scholar
  9. Cudrigh SF (2002) Die Wasserwegigkeit des Gasteiner Thermalwassersystems unter Berücksichtigung der Strukturgeologie und im Vergleich zum Thermalsystem Lend. Unpubl. Master thesis, Univ. Salzburg, p 76Google Scholar
  10. Darling WG (2004) Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quat Sci Rev 23:743–770CrossRefGoogle Scholar
  11. Dublyansky YV (1995) Speleogenetic history of the Hungarian hydrothermal karst. Environ Geol 25:24–35CrossRefGoogle Scholar
  12. Dublyansky YV (2000) Hydrothermal speleogenesis—its settings and peculiar features. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of karst aquifers. National Speleol. Soc, Huntsville, pp 292–297Google Scholar
  13. Dublyansky YV (2005) Hydrothermal caves. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 300–304Google Scholar
  14. Egle S (1991) Geochemische und isotopengeochemische Untersuchungen des Gasteiner Thermalwassers unter besonderer Berücksichtigung der Wechselwirkung mit dem Zentralgneis. Unpubl. MS thesis, Univ. Vienna, p 119Google Scholar
  15. Exner C (1979) Geologie des Salzachtales zwischen Taxenbach und Lend. Jahrb Geol Bundesanstalt 122:1–73Google Scholar
  16. Frank N, Braum M, Hambach U, Mangini A, Wagner G (2000) Warm period growth of travertine during the Last Interglaciation in southern Germany. Quat Res 54:38–48CrossRefGoogle Scholar
  17. Friedman I, O’Neil, JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, 6th edn. U. S. Geol. Survey Prof. Paper, 440-KK, pp 1–12Google Scholar
  18. Frimmel HE (1992) Isotopic fronts in hydrothermally mineralized carbonate rocks. Mineral Deposita 27:257–267CrossRefGoogle Scholar
  19. Frisia S, Borsato A, Fairchild IJ, McDermott F (2000) Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. J Sed Res 70:1183–1196CrossRefGoogle Scholar
  20. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 31. SEPM, Tulsa, 199pGoogle Scholar
  21. Heissel W (1955) Aufnahmsbericht 1954 Kartenblätter 124-Saalfelden und 125-Bischofshofen. Verh Geol Bundesanstalt 1955:36–37Google Scholar
  22. Hoefs J (2004) Stable isotope geochemistry, 5th edn. Springer, Berlin, pp 244Google Scholar
  23. Hölting B, Coldewey WG (2005) Hydrogeologie. Einführung in die Allgemeine und Angewandte Hydrogeologie, 6th edn. Spektrum, Munich, pp 326Google Scholar
  24. Horninger G (1956) Geologische Ergebnisse bei einigen Kraftwerksbauten. Verh Geol Bundesanstalt 1956:114–118Google Scholar
  25. Horninger G (1958) Geologische Ergebnisse bei einigen Kraftwerksbauten. Verh Geol Bundesanstalt 1958:282–286Google Scholar
  26. Horninger G (1959a) Baugeologisches vom Salzach-Kraftwerk Schwarzach. Österr Z Elektrizitätswirtschaft 12:48–50Google Scholar
  27. Horninger G (1959b) Geologische Ergebnisse bei einigen Kraftwerksbauten in Österreich. Verh Geol Bundesanstalt 1959:A112–A115Google Scholar
  28. Humer G (1995) Niederschlagsisotopennetz Österreich Teil 2: Daten. Umweltbundesamt Berichte 33:1–110Google Scholar
  29. Job C, Zőtl J (1969) Zur Frage der Herkunft des gasteiner Thermalwassers. Steir Beitr Hydrogeol 21:51–115Google Scholar
  30. Kendall AC, Broughton PL (1978) Origin of fabrics in speleothems composed of columnar calcite crystals. J Sed Petrol 48:519–538Google Scholar
  31. Klappacher W (1992) Salzburger Höhlenbuch Band 5. Salzburger Mittelgebirge und Zentralalpen. Landesverein für Höhlenkunde in Salzburg, Salzburg, p 625Google Scholar
  32. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569CrossRefGoogle Scholar
  33. Meyer M (2006) Laminated speleothems as high-resolution archives of alpine paleoclimate. Unpubl. Ph.D. thesis, Univ. Innsbruck, 120pGoogle Scholar
  34. Müller P (1989) Hydrothermal paleokarst of Hungary. In: Bosak P (Ed) Paleo-Karst: a systematical and regional review. Academia, Prague, pp 155–163Google Scholar
  35. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312pGoogle Scholar
  36. Peer H, Zimmer W (1980) Geologie der Nordrahmenzone der Hohen Tauern (Gasteiner Ache bis Saukarkopf-Großarltal). Jahrb Geol Bundesanstalt 123:411–466Google Scholar
  37. Plan L, Pavuza R, Seemann R (2006) Das Nasse Schacht bei Mannersdorf am Leithagebirge, NÖ (2911/21) – eine thermal beeinflusste Höhle am Ostrand des Wiener Beckens. Die Höhle 57:30–46Google Scholar
  38. Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430CrossRefGoogle Scholar
  39. Russegger J (1836) Ueber die warmen Quellen des Arlbaches am Ausgange des Groß-Arl-Thales im Salzburgischen. Steiermärkische Zeitschrift N F 3:100–114Google Scholar
  40. Spötl C, Vennemann T (2003) Continuous-flow IRMS analysis of carbonate minerals. Rapid Comm Mass Spectrom 17:1004–1006CrossRefGoogle Scholar
  41. Spötl C, Mattey D (2006) Stable isotope microsampling of speleothems: a comparison of drill, micromill and laser ablation techniques. Chem Geol 235:48–58CrossRefGoogle Scholar
  42. Stini J (1959) Gastein und der Warmwassereinbruch in den Lender Druckstollen. Geol Bauwesen 23:258–265Google Scholar
  43. Truesdell AH, Hulston JR (1980) Isotopic evidence on environments of geothermal systems. In: Fritz P, Fontes J (eds.) Handbook of environmental isotope geochemistry, vol 1. Elsevier, New York, 179–226Google Scholar
  44. Wang X, Neubauer F (1998) Orogen-parallel strike-slip faults bordering metamorphic core complexes: the Salzach-Enns fault zone in the Eastern Alps, Austria. J Struct Geol 20:799–818CrossRefGoogle Scholar
  45. Zimmermann U, Zötl J (1971) Deuterium- und Sauerstoff-18-Gehalt von Gasteiner Thermal- und Kaltwässern. Steirische Beiträge Hydrogeol 23:127–132Google Scholar
  46. Zötl J, Goldbrunner JE (1993) Die Mineral- und Heilwässer Österreichs. Geologische Grundlagen und Spurenelemente. Springer, Vienna, p 324Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christoph Spötl
    • 1
    Email author
  • Yuri Dublyansky
    • 1
  • Michael Meyer
    • 1
  • Augusto Mangini
    • 2
  1. 1.Institut für Geologie und PaläontologieUniversität InnsbruckInnsbruckAustria
  2. 2.Forschungsstelle RadiometrieHeidelberger Akademie der WissenschaftenHeidelbergGermany

Personalised recommendations