International Journal of Earth Sciences

, Volume 97, Issue 5, pp 931–953 | Cite as

A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in The Netherlands

  • S. Nelskamp
  • P. David
  • R. LittkeEmail author
Original Paper


Sedimentary basins in The Netherlands contain significant amounts of hydrocarbon resources, which developed in response to temperature and pressure history during Mesozoic and Cenozoic times. Quantification and modelling of burial, maturity and temperature histories are the major goals of this study, allowing for a better understanding of the general geological evolution of the different basins as well as petroleum generation. All major basins in The Netherlands encountered at least one time of inversion and therefore moderate to high amounts of erosion. In order to determine the amount of inversion the basins have experienced, a 1D study was performed on 20 wells within three basins (West Netherlands, Central Netherlands and Lower Saxony Basins). New vitrinite reflectance values were obtained and existing data re-evaluated to gain a good data base. The burial histories of six wells, two for each studied basin, are presented here, to demonstrate the differences in basin evolution that led to their present shape and petroleum potential. The Permo-Triassic subsidence phase can be recognized in all three basins, but with varying intensity. In the Jurassic, the basins experienced different relative movements that culminated in the Cretaceous when the influence of the inversion caused erosion of up to 2,500 m. Most wells show deepest burial at present-day, whereas the timing of maximum temperature differs significantly.


Basin modelling West Netherlands Basin Central Netherlands Basin Lower Saxony Basin Vitrinite reflectance 



This work was conducted and funded under the umbrella of the DFG (German Research Foundation) priority programme 1135 “Dynamics of sedimentary systems under varying stress regimes: the example of the Central European Basin System” (grant no. Li 618/15). Vitrinite reflectance and well data were provided by the TNO-B&O (Netherlands Geological Service). We would like to express our gratitude to these organisations. In addition we would like to thank the reviewers M. Geluk and R. Van Balen for their valuable comments on an earlier draft of this manuscript.


  1. Allen PA, Allen JR (2005) Basin analysis: principles and applications. Blackwell, Oxford, pp 1–549Google Scholar
  2. Baldschuhn R, Kockel F (1999) Das Osning-Lineament am Südrand des Niedersächsichen Beckens. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 150:673–695Google Scholar
  3. Betz D, Fuehrer F, Greiner G, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics 137:127–170CrossRefGoogle Scholar
  4. Binot F, Gerling P, Hiltmann W, Kockel F, Wehner H (1993) The Petroleum System in the Lower Saxony Basin. In: Spencer AM (eds) Generation, accumulation and production of Europe’s hydrocarbons. Springer, Heidelberg, pp 121–139Google Scholar
  5. Bouw L, Oude Essink GHP (2003) Fluid flow in the northern Broad Fourteens Basin during Late Cretaceous inversion. Geologie en Mijnbouw, Neth J Geosci 82:55–69Google Scholar
  6. Büker C, Littke R, Welte DH (1995) 2D-modelling of the thermal evolution of Carboniferous and Devonian sedimentary rocks of the eastern Ruhr basin and northern Rhenish Massif, Germany. Zeitschr.Deutsche GeolGes 146:321–339Google Scholar
  7. De Jager J (2003) Inverted basins in the Netherlands, similarities and differences. Geologie en Mijnbouw, Neth J Geosci 82:355–366Google Scholar
  8. De Jager J, Doyle MA, Grantham PJ, Mabillard JE (1996) Hydrocarbon habitat of the West Netherlands Basin. In: Rondeel HE, Batjes DAJ, Nieuwenhuijs WH (eds) Geology of gas and oil under the Netherlands. Kluwer, Dordrecht, pp 191–209Google Scholar
  9. De Lugt IR, Van Wees JD, Wong ThE (2003) The tectonic evolution of the southern Dutch North Sea during the Paleogene: basin inversion in distinct pulses. Tectonophysics 373:141–159CrossRefGoogle Scholar
  10. DeVault B (2000) Analysis of fault reactivation and paleo-juxaposition relationships in the West Netherlands Basin. Annual Meeting expanded Abstracts—American Association of Petroleum Geologists: Tulsa, OK, United States, American Association of Petroleum Geologists and Society of Economic Paleontologists and Mineralogists (AAPG), pp 1–38Google Scholar
  11. DeVault B, Jeremiah J (2002) Tectonostratigraphy of the Nieuwerkerk Formation (Delfland Subgroup), West Netherlands Basin. AAPG Bull 86:1679–1707Google Scholar
  12. Dronkers AJ, Mrozek FJ (1991) Inverted basins of The Netherlands. First Break 9:409–425Google Scholar
  13. Duin EJT, Doornenbal JC, Rijkers RHB, Verbeek JW, Wong TE (2006) Subsurface structure of the Netherlands - results of recent onshore and offshore mapping. Neth J Geosci 85:245–276Google Scholar
  14. Eigenfeldt RWF, Eigenfeldt-Mende I (1986) Niederländische permokarbone basische Magmatite als Fortsetzung der spilitisierten Effusiva in NW-Deutschland. Mededelingen Rijks Geologische Dienst 40:11–21Google Scholar
  15. Geluk MC (2005) Stratigraphy and tectonics of Permo-Triassic basins the the Netherlands and surrounding areas. PhD thesis : University Utrecht, 172 ppGoogle Scholar
  16. Geluk MC, Duin EJTh, Dusar M, Rijkers RHB, Van den Berg MW, Van Rooijen P (1994) Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw 73:129–141Google Scholar
  17. Gradstein F, Ogg J, Smith A (2004) A geologic time scale, 2004. Cambridge University Press, Cambridge, pp 1–589Google Scholar
  18. Gras R (1995) Late Cretaceous sedimentation and tectonic inversion, southern Netherlands. Geologie en Mijnbouw 74:117–127Google Scholar
  19. Gras R, Geluk MC (1999) Late Cretaceous - Early Tertiary sedimentation and tectonic inversion in the southern Netherlands. Geologie en Mijnbouw 78:1–19CrossRefGoogle Scholar
  20. Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG, Smith DG (1990) A geologic time scale, 1989. Cambridge University Press, Cambridge, pp 1–263Google Scholar
  21. Hooper RJ, Goh LS, Dewey F (1995) The inversion history of the northeastern margin of the Broad Fourteens Basin. In: Buchanan JG, Buchanan PG (eds) Basin inversion. The Geological Society, London, pp 307–317Google Scholar
  22. Hurter S, Haenel R (2002), Atlas of geothermal resources in Europe. Office for official publications of the European communities, Luxemburg, pp 1–93Google Scholar
  23. Kappelmeyer O, Haenel R (1974): Geothermics with special reference to application. Geoexpl. Monogr. 1 (4) Borntraeger, Berlin, Stuttgart, pp 1–238Google Scholar
  24. Kertz W (1969) Einfuerhrung in die Geophysik I. B.I.-Wissenschaftsverlag, Mannheim, pp 1–232Google Scholar
  25. Kockel F, Wehner H, Gerling P (1994) Petroleum Systems of the Lower Saxony Basin, Germany. In: Magoon LB, Dow WG (eds) The petroleum system—from source to trap: AAPG Memoir 60, pp 573–586Google Scholar
  26. Leischner K, Welte DH, Littke R (1993) Fluid inclusions and organic maturity parameters as calibration tools in basin modelling. In: Dore AG et al (ed) Basin modelling: advances and applications. Elsevier, Amsterdam, pp 161–172Google Scholar
  27. Littke R, Krooss B, Idiz EF, Frielingsdorf J (1995) Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures. Amer Assoc Petr Geol Bull 79:410–430Google Scholar
  28. Littke R, Büker C, Hertle M, Karg H, Stroetmann-Heinen V, Oncken O (2000) Heat flow evolution, subsidence and erosion in the Rhenohercynian orogenic wedge of central Europe. Geol Soc Spec Publ 179:231–255CrossRefGoogle Scholar
  29. Littke R, Bayer U, Gajewski D (2005) Dynamics of sedimentary basins: the example of the Central European Basin system. Int J Earth Sci 94:779–781CrossRefGoogle Scholar
  30. Lopatin NV (1971) Temperature and geologic time as factors in coalification. Akad Nauk SSSR Izv Ser Geol 3:95–106; MoskvaGoogle Scholar
  31. Michon L, Van Balen RT (2005) Characterization and quantification of active faulting in the Roer Valley rift system based on high precision digital elevation models. In: Cloetingh SAPL, Cornu TGM (eds) Neotectonics and Quaternary fault-reactivation in Europe’s intraplate lithosphere: Oxford, Pergamon, Oxford, pp 455–472Google Scholar
  32. Michon L, Van Balen RT, Merle O, Pagnier HJM (2003) The Cenozoic evolution of the Roer Valley Rift System integrated at a European Scale. Tectonophysics 367:101–126CrossRefGoogle Scholar
  33. NITG-TNO (1998) Geological atlas of the subsurface of the Netherlands, explanation to map sheet X: Almelo-Winterswijk. NITG-TNO, Haarlem, pp 1–143Google Scholar
  34. Paulick H, Breitkreuz C (2005) The Late Paleozoic felsic lava-dominated large igneous province in northeast Germany: volcanic facies analysis based on drill cores. Int J Earth Sci 94:834–850CrossRefGoogle Scholar
  35. Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: Intrusion of deep burial? Tectonophysics 304:317–344CrossRefGoogle Scholar
  36. Poelchau HS, Baker DR, Hantschel T, Horsfield B, Wygrala B (1997) Basin simulation and the design of the conceptual basin model. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 3–70Google Scholar
  37. Rijks Geologische Dienst (1994) Geological Atlas of the Subsurface of the Netherlands, explanation to map sheet V. Sneek-Zwolle. Haarlem, pp 1–126Google Scholar
  38. Rijkers R, Van Doorn THM (1997) Atlas of geothermal resources in the European Community, the Netherlands. NITG-TNO report 97–24–A, DelftGoogle Scholar
  39. Rybach L (1986) Amount and significance of radioactive heat sources in sediments. In: Burrus J (ed) Thermal modelling in sedimentary basins, 1st IFP Exploration Research Conference, Carcans, France, June 3–7,1985, pp 311–322Google Scholar
  40. Schwarzer D, Littke R (2007) Petroleum generation and migration in the “Tight Gas” area of the German Rotliegend natural gas play: a basin modelling study. Petrol Geosci 12:1–27Google Scholar
  41. Senglaub Y, Brix MR, Adriasola AC, Littke R (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci 94:876–896CrossRefGoogle Scholar
  42. Senglaub Y, Littke R, Brix M (2006) Numerical modelling of burial and temperature history as an approach for an alternative interpretation of the Bramsche anomaly, Lower Saxony Basin. Int J Earth Sci 95:204–224CrossRefGoogle Scholar
  43. Sissingh W (2004) Palaeozoic and Mesozoic igneous activity in the Netherlands; a tectonomagmatic review. Geologie en Mijnbouw Neth J Geosci 83:113–134Google Scholar
  44. Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570Google Scholar
  45. Taylor GH, Teichmüller M, Davies A, Diessel CFK, Littke R (1998) Organic petrology. Gebrüder Bornträger, Berlin, pp 1–704Google Scholar
  46. TNO-NITG (2000) Geological Atlas of the subsurface of The Netherlands, explanation to map sheet VI: Veendam-Hogeveen. Netherlands Institute of Applied Geoscience TNO, National Geological Survey, Utrecht, pp 1–152Google Scholar
  47. TNO-NITG (2002) Geological Atlas of the Subsurface of the Netherlands, explanation to map sheets VII and VIII. Noordwijk-Rotterdam and Amsterdam-Gorinchem. Utrecht, pp 1–135Google Scholar
  48. TNO-NITG (2004a) Geological atlas of the subsurface of The Netherlands—onshore. Netherlands Institute of Applied Geosciences TNO, Utrecht, pp 1–103Google Scholar
  49. TNO-NITG (2004b) Geological Atlas of the Subsurface of the Netherlands, explanation to map sheet IX. Harderwijk-Nijmegen. Utrecht, pp 1–123Google Scholar
  50. Van Wijhe DH (1987) Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137:171–219CrossRefGoogle Scholar
  51. Van Adrichem Boogaert HA, Kouwe WPF (1993–1997) Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Rijks Geologische Dienst, Maastricht, NetherlandsGoogle Scholar
  52. Van Balen RT, Van Bergen F, De Leeuw C, Pagnier HJM, Simmelink HJ, Van Wees JD, Verweij JM (2000) Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands. Geologie en Mijnbouw, Neth J Geosci 79:29–44Google Scholar
  53. Van Balen RT, Verweij JM, Van Wees JD, Simmelink HJ, Van Bergen F, Pagnier HJM (2002) Deep subsurface temperatures in the Roer Valley Graben and the Peelblock, the Netherlands—new results. Geologie en Mijnbouw, Neth J Geosci 81:19–26Google Scholar
  54. Van Balen RT, Houtgast RF, Cloetingh SAPL (2005) Neotectonics of the Netherlands; a review. In: Cloetingh SAPL, Cornu TGM (eds) Neotectonics and Quaternary fault-reactivation in Europe’s intraplate lithosphere. Pergamon, Oxford, pp 439–454Google Scholar
  55. Veld H, Fermond WJJ, Jegers LF (1993) Organic petrological characterisation of Westphalian coals from the Netherlands: Correlation between Tmax, vitrinite reflectance and hydrogen index. Org Geochem 20:659–675CrossRefGoogle Scholar
  56. Veld H, Fermont WJJ, Kerp H, Visscher H (1996) Geothermal history of the Carboniferous in South Limburg, the Netherlands. In: Rondeel HE, Batjes DAJ, Nieuwenhuijs WH (eds) Geology of gas and oil under The Netherlands. Kluwer, Dortrecht, pp 31–43Google Scholar
  57. Verweij JM, Simmelink HJ (2002) Geodynamic and hydrodynamic evolution of the Broad Fourteens Basin (The Netherlands) in relation to its petroleum systems. Mar Petrol Geol 19:339–359CrossRefGoogle Scholar
  58. Verweij JM, Simmelink HJ, Van Balen RT, David P (2003) History of petroleum systems in the southern part of the Broad Fourteens Basin. Geologie en Mijnbouw, Neth J Geosci 82:71–90Google Scholar
  59. Waples DW (1980) Time and temperature in petroleum formation—application of Lopatins method to petroleum-exploration. Aapg Bull Am Assoc Petrol Geol 64:916–926Google Scholar
  60. Wong TE, Parker N, Horst P (2001) Tertiary sedimentation development of the Broad Fourteens area, the Netherlands. Geologie en Mijnbouw, Neth J Geosci 80:85–94Google Scholar
  61. Wygrala BP (1989) Integrated study of an oil field in the southern Po basin, northern Italy. Berichte Kernforschungsanlage Jülich 2313, pp 1–217Google Scholar
  62. Yalcin NM, Littke R, Sachsenhofer RF (1997) Thermal histories of sedimentary basins. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 71–167Google Scholar
  63. Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland - a geodynamic model. Tectonophysics 137:389–420CrossRefGoogle Scholar
  64. Ziegler PA (1988) Evolution of the Arctic, North Atlantic and western Tethys. AAPG Memoir 43:108Google Scholar
  65. Ziegler PA (1990a) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij, Geological Society Publishing House, pp 1–239Google Scholar
  66. Ziegler PA (1990b) Tectonic and paleogeographic development of the North Sea rift system. In: Blundell DJ, Gibbs AD (eds) Tectonic evolution of the North Sea rifts. Oxford Science Publications, Oxford, pp 1–36Google Scholar
  67. Ziegler PA, Cloetingh S, Van Wees JD, (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59CrossRefGoogle Scholar
  68. Ziegler PA, Schumacher ME, Dezes P, Van Wees JD, Cloetingh SAPL (2004) Post-Variscan evolution of the lithosphere in the Rhine Graben area; constraints from subsidence modelling. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-carboniferous magmatism and rifting in Europe. Geological Society of London, London, pp 289–317Google Scholar
  69. Zijerveld L, Stephenson R, Cloetingh S, Duin E, Van den Berg MV (1992) Subsidence analysis and modelling of the Roer Valley Graben. Tectonophysics 208:159–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute for Geology and Geochemistry of Petroleum and CoalRWTH Aachen UniversityAachenGermany
  2. 2.TNO Built Environment and GeosciencesTA UtrechtThe Netherlands

Personalised recommendations