International Journal of Earth Sciences

, Volume 97, Issue 2, pp 385–399 | Cite as

Estimation of hydraulic permeability considering the micro morphology of rocks of the borehole YAXCOPOIL-1 (Impact crater Chicxulub, Mexico)

Review Article

Abstract

Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance.

For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.

Keywords

Internal surface Nuclear Magnetic Resonance Permeability Carbonate rocks Suevites 

Notes

Acknowledgments

The research was funded by the Deutsche Forschungsgemeinschaft (DFG-grant BU 298/16) within the ICDP-Chicxulub project. The authors also wish to acknowledge support in the form of a grant from Schlumberger Oilfield Services and the Russian Foundation for Basic Research (grant No 05-05-64879). The authors thank Dr. J. Urrutia-Fucugauchi and Dr. A.-M. Soler-Arechalde (UNAM, Mexico) for their help in core collection preparation and delivery. We thank D. Korobkov (MSGPU, Moscow) and A. Scholz (Technical University Berlin) for active help in petrophysical measurements, U. Trautwein (GFZ Potsdam) for permeability measurements, S. Schuldt (Technical University Berlin) for Dunham classification and J. Nissen (ZELMI, Technical University Berlin) for helpful hints whilst operating the SEM. We thank an anonymous reviewer and Patrick Fulton for their detailed comments and suggestions that helped to improve the manuscript.

References

  1. Abramov O, Kring DA (2007) Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteorit Planet Sci 42(1):93–112Google Scholar
  2. Akbar M, Petricola M, Watfa M, Badri M, Charara M, Boyd A, Cassel B, Nurmi R, Delhomme JP, Grace M, Kenyon B, Roestenburg J (1995) Classic interpretation problems: evaluating carbonates. Oilfield Rev Winter: 38–57Google Scholar
  3. Allen D, Flaum C, Ramakrishnan TS, Bedford J, Castelijns K, Fairhurst D, Gubelin G, Heaton N, Minh CC, Norville MA, Seim MR, Pritchard T, Ramamoorthy R (2000) Trends in NMR logging. Oilfield Rev 12: 2–19Google Scholar
  4. Arnold J, Clauser C, Pechnig R, Anferova S, Anferov V, Blümich B (2006) Porosity and permeability from mobile NMR core-scanning. Petrophysics 47(4):306–314Google Scholar
  5. Chopra S, Chemingui N, Miller R (2005) An introduction to this special section carbonates. Leading Edge 24:488–489CrossRefGoogle Scholar
  6. Dressler B (2002) Summary of the lithological report for ICDP/Chixculub-Yax-1 ICDP/OSG. Tech. rep. GeoForschungsZentrum PotsdamGoogle Scholar
  7. Dressler B, Sharpton VI, Morgan J, Buffler R, Moran D, Smit J, Stöffler D, Urrutia J (2003) Investigating a 65-ma-old smoking gun: deep drilling of the Chicxulub impact structure. EOS 84:125–130CrossRefGoogle Scholar
  8. Dunham R (1962) Classification of carbonate rocks according to depositional texture. Classification of carbonate rocks. Am Assoc Petrol Geol Mem 1:108–121Google Scholar
  9. Hecht L, Wittmann A, Schmitt R, Stöffler D (2004) Composition of melt particles and the effects of post-impact alteration in suevitic rocks at the Yaxcopoil-1 drill core Chicxulub impact crater Mexico. Meteorit Planet Sci 39(7):1169–1186Google Scholar
  10. Katz A, Thompson A (1986) Quantitative prediction of permeability in porous rocks. Phys Rev 43(11):8179–8181Google Scholar
  11. Kenkmann T, Wittmann A, Scherler D (2004) Structure and impact indicators of the cretaceous sequence of the drill core Yaxcopoil-1 Chicxulub impact crater, Mexico. Meteorit Planet Sci 39(7):1069–1088Google Scholar
  12. Kenyon W (1997) Petrophysical principles of application of NMR logging. Log Anal 38(2):21–43Google Scholar
  13. Kring DA (2005) Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: Comparing the Ries (~24 km) and Chicxulub (~180 km) impact craters, Invited paper. Chemie der Erde 65:1–46CrossRefGoogle Scholar
  14. Lefticariu M, Perry EC, Ward WC, Lefticariu L (2006) Post-Chicxulub depositional and diagenetic history of the northwestern Yucatan peninsula, Mexico. Sediment Geol 183:51–69CrossRefGoogle Scholar
  15. Lüders V, Rickers K (2004) Fluid inclusion evidence for impact-related hydrothermal fluid and hydrocarbon migration in cretaceous sediments of the ICDP-Chicxulub drill core Yaxcopoil-1. Meteorit Planet Sci 39(7):1187–1198Google Scholar
  16. Manning CE, Ingebritsen SE (1999) Permeability of the continental crust: the implications of geothermal data and metamorphic systems. Rev Geophys 37:27–150CrossRefGoogle Scholar
  17. Mayr S, Burkhardt H (2006) Ultrasonic properties of sedimentary rocks: Effect of pressure saturation frequency and microcracks. Geophys J Int 164:246–258CrossRefGoogle Scholar
  18. Mayr S, Burkhardt H, Popov Y, Romushkevich R, Bayuk I, Wittmann A, Heidinger P, Wilhelm H (2007) Integrated interpretation of physical properties of rocks of the borehole Yaxcopoil-1 (Chicxulub impact crater) with respect to lithology. JGR (Submitted)Google Scholar
  19. Morgan J, Warner M, Urrutia-Fucugauchi J, Gulick S, Christeson G, Barton P, Rebolledo-Vieyra M, Melosh HJ (2005) Chicxulub crater seismic survey prepares way for future drilling Eos transactions. Am Geophys Union 86:325–328Google Scholar
  20. Pape H, Rieper L, Schopper J (1982) A pigeon-hole model for relating permeability to specific surface. Log Anal 23(1):5–13Google Scholar
  21. Pape H, Rieper L, Schopper J (1987) Interlayer conductivity of rocks—a fractal model of interface irregularities for calculating interlayer conductivity of porous mineral systems. Colloids Surf 27:97–122Google Scholar
  22. Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64:1447–1460CrossRefGoogle Scholar
  23. Pape H, Clauser C, Iffland J (2000) Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model. Pure Appl Geophysics 157:603–619CrossRefGoogle Scholar
  24. Popov Y, Romushkevich R, Bayuk I, Korobkov D, Mayr S, Burkhardt H, Wilhelm H (2004) Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater. Meteorit Planet Sci 39(6):799–812Google Scholar
  25. Safanda J, Heidinger P, Wilhelm H, Cermák V (2006) Post-drilling destabilisation of temperature profile in borehole Yaxcopoil-1, Mexico. Hydrogeol J, Published Online August 2006Google Scholar
  26. Schmitt R, Wittmann A, Stöffler D (2004) Geochemistry of drill core samples from Yaxcopoil-1 Chicxulub impact crater, Mexico. Meteorit Planet Sci 39(6):979–1001Google Scholar
  27. Smith L, Chapman DS (1983) On the thermal effects of groundwater flow 1. Regional scale systems. J Geophys Res 88:593–608CrossRefGoogle Scholar
  28. Schön J (1997) Physical properties of rocks: fundamentals and principles of petrophysics. In: Seismic exploration on CD-ROM. Elsevier, AmsterdamGoogle Scholar
  29. Schopper JR (1982) Landolt-Börnstein: numerical data and functional relationships in science and technology new series; group v geophysics and space research physical properties of rocks. In: Porosity and permeability, vol. 1. Springer, HeidelbergGoogle Scholar
  30. Stinnesbeck W, Keller G, Adatte T, Harting M, Stüben D, Istrate G, Kramar U (2004) Yaxcopoil-1 and the Chicxulub impact. Int J Earth Sci (Geol Rundschau) 93:1042–1065CrossRefGoogle Scholar
  31. Urrutia-Fucugauchi J, Morgan J, Stöffler D, Claeys P (2004) The Chicxulub scientific drilling project (CSDP). Meteorit Planet Sci 39(6):787–790Google Scholar
  32. Vermeesch P, Morgan J (2004) Chicxulub central crater structure: Initial results from petrophysical property measurements and combined velocity and gravity modelling. Meteorit Planet Sci 39(7):1019–1034Google Scholar
  33. Wilhelm H, Heidinger P, Safanda J, Cermák V, Burkhardt H, Popov Y (2004) High resolution temperature measurements in the borehole Yaxcopoil-1, Mexico. Meteorit Planet Sci 39(6):813–819CrossRefGoogle Scholar
  34. Wittmann A, Kenkmann T, Hecht L, Stöffler D (2007) Reconstruction of the Chicxulub ejecta plume from its deposits in drill core Yaxcopoil-1. GSA Bull (in press)Google Scholar
  35. Wohlgemuth L, Bintakies E, Kück J, Conze R, Harms U (2004) Integrated deep drilling coring downhole logging and data management in the Chicxulub scientific drilling project (CSDP) Mexico. Meteorit Planet Sci 39(6):791–797Google Scholar
  36. Zimmermann G, Burkhardt H, Engelhard L (2005) Scale dependence of hydraulic and structural parameters in fractured rock from borehole data (KTB and HSDP). In: Petrophysical properties of crystalline rocks. Geological Society London Special Publications, London, pp 37–45Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. I. Mayr
    • 1
  • H. Burkhardt
    • 1
  • Yu. Popov
    • 2
  • A. Wittmann
    • 3
  1. 1.Department of Applied GeosciencesTechnical University BerlinBerlinGermany
  2. 2.Technical physics and rock physicsRussian State Geological Prospecting UniversityMoscowRussia
  3. 3.Humboldt-Universität zu Berlin, Museum für Naturkunde, MineralogieBerlinGermany

Personalised recommendations