International Journal of Earth Sciences

, Volume 97, Issue 6, pp 1151–1164 | Cite as

Geochemical and petrological aspects of dike intrusions in the Lycian ophiolites (SW Turkey): a case study for the dike emplacement along the Tauride Belt Ophiolites

  • Ö. F. Çelik
  • M. Chiaradia
Original Paper


Lycian ophiolites located in the Western Taurides, are cut at all structural levels by dolerite and gabbro dikes. The dolerite dikes from this area are both pristine and metamorphosed. The non-metamorphosed dikes are observed both in the peridotites and in the metamorphic sole rocks. Accordingly, the non-metamorphosed dikes cutting the metamorphic sole were generated after cooling of the metamorphic sole rocks. The metamorphosed dolerite dikes are only observed in the peridotites. The physical conditions and timing of the metamorphism for the metamorphosed dolerite dikes are similar to those of the metamorphic sole rocks of the Lycian ophiolites suggesting that the metamorphosed dolerite dikes were metamorphosed together with the metamorphic sole rocks. Therefore, the dike injections in the western part of the Tauride Belt Ophiolites occurred before and after the generation of the metamorphic sole rocks. All metamorphosed and non-metamorphosed dikes are considered to have the same origin and all of them are subduction-related as inferred from whole-rock geochemistry and lead isotopes. Lead isotope compositions of whole rocks of both dike groups cluster in a narrow field in conventional Pb isotope diagrams (206Pb/204Pb = 18.40–18.64; 207Pb/204Pb = 15.56–15.58; 208Pb/204Pb = 38.23–38.56) indicating a derivation from an isotopically homogeneous source. On the 207Pb/204Pb versus 206Pb/204Pb diagram, isotope compositions of the dikes plot slightly below the orogen curve suggesting contributions from mantle reservoir enriched by subducted oceanic lithosphere. Such a signature is typical of island arc magmatic rocks and supports the formation of the investigated rocks in a subduction-related environment.


Amphibolite Dolerite dike Mineral chemistry Pb isotopes Salda Lake 



This work is a part of the Ph.D study by Ö. F. Çelik. Ö. F. Çelik acknowledges financial support from the Swiss National Research Foundation (Projects no: 20–52294.97 and 20–058786.99). The first author thanks M. Delaloye and L. Fontbote for making available laboratory facilities at the University of Geneva, Switzerland. H. Sarp is thanked for constructive suggestions. We thank Y. Dilek and B. C. Burchfiel for their critical and constructive reviews of the paper. We also thank F. Capponi for performing major-and trace-element analyses.


  1. Çelik ÖF (2002) Geochemical, petrological and geochronological observations on the metamorphic rocks of the Tauride Belt Ophiolites (S.Turkey). Published Ph.D. thesis, Université de Genève. Terre Environment 39:257Google Scholar
  2. Çelik ÖF, Delaloye MF (2003) Origin of metamorphic soles and their post-kinematic mafic dyke swarms in the Antalya and Lycian ophiolites, SW Turkey. Geol J 38:235–256CrossRefGoogle Scholar
  3. Çelik ÖF, Delaloye MF (2004) Mineral chemistry and P–T conditions of metamorphic sole rocks from the Lycian and the Antalya ophiolites, western Taurides (SW Turkey). In: Chatzipetros AA, Pavlides SB (eds) Proceedings of 5th international Eastern Mediterranean Geology Symposium, vol 1, 14–20 April. Thessaloniki, Greece, p 241Google Scholar
  4. Çelik ÖF, Delaloye MF (2006) Characteristics of ophiolite-related metamorphic rocks in the BeyŞehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. J Asian Earth Sci 26:461–476CrossRefGoogle Scholar
  5. Çelik ÖF, Chiaradia M, Delaloye MF (2002) Geodynamic significance of doleritic and amphibolitic dikes near Yeşilova (SW Turkey) inferred from major, trace, Ree and Pb isotopes. Abstracts of 1st international symposium of Istanbul Technical University the Faculty of Mines on Earth Sciences and Engineering, 16–18 May, Istanbul, Turkey,  pp 132Google Scholar
  6. Çelik ÖF, Delaloye MF, Feraud G (2006) Precise 40Ar−39Ar ages from the metamorphic sole rocks of the Tauride Belt Ophiolites, southern Turkey: implications for the rapid cooling history. Geol Mag 143:213–227CrossRefGoogle Scholar
  7. Collins AS, Robertson AHF (1998) Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translation in the Lycian Taurides, SW Turkey. J Geol Soc Lond 155:759–772CrossRefGoogle Scholar
  8. Dilek Y, Moores E (1990) Regional tectonics of the eastern Mediterranean ophiolites. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Ophiolites-oceanic crustal analogues. Proceedings of International Troodos Ophiolite Symposium, Cyprus, pp 295–309Google Scholar
  9. Dilek Y, Thy P, Hacker B, Grundvig S (1999) Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): implications for the Neotethyan ocean. Geol Soc Am Bull 111:1192–1216CrossRefGoogle Scholar
  10. Dilek Y, Shallo M, Furnes H (2005) Rift-drift, seafloor spreading, and subduction Tectonics of Albanian Ophiolites. Int Geol Rev 47:147–176CrossRefGoogle Scholar
  11. Engin T, Hirst DM (1970) The alpine chrome ores of the Andızlık-Zımparalık area, Fethiye, SW Turkey. Mineral Mag 38:76–82CrossRefGoogle Scholar
  12. Graciansky PC (1967) Existence d’une nappe ophiolitque à l’extrémité occidentale de la chaine sud anatolienne; relation avec les autres unités charriées et avec les terrains autochtones (Province de Muğla, Turquie). Comptes Rendus de l’Académie des Sciences, Paris, Série D 264:2876–2879Google Scholar
  13. Graciansky PC (1968) Teke yarımadası (Likya) Toroslarının üst üst’e gelmiŞ ünitelerinin stratigrafisi ve Dinaro-Toroslar’daki yeri [Stratigraphy of the Tauride nappes in Teke Peninsula (Lycia) and their significance in Dinaro-Tauride belt]. Bull Mineral Res Expl Inst Turkey 71:73–93Google Scholar
  14. Gutnic M, Monod O, Poisson A, Dumont JF (1979) Géologie des Taurides Occidentales (Turquie). Société Géologique de France 137:1–112Google Scholar
  15. Holland TJB, Blundy JD (1994) Non-Ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Mineral Petrol 116:433–447CrossRefGoogle Scholar
  16. Jones G, Robertson AHF, Cann JR (1991) Genesis and emplacement of the supra-subduction zone Pindos ophiolite, northwestern Greece. In: Peters TJ, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Dordrecht, pp 771–779Google Scholar
  17. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthopne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommitee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Am Mineral 82:1019–1037Google Scholar
  18. Lytwyn JN, Casey JF (1995) The Geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozantı-Karsantı ophiolite, Turkey: evidence for ridge subduction. Geol Soc Am Bull 7:830–850CrossRefGoogle Scholar
  19. Maden Tetkik ve Arama Genel Müdürlüğü (2002) 1:500000 Turkish Geological Map, No.13, Denizli sheet. Maden Tetkik Arama (MTA), AnkaraGoogle Scholar
  20. Meschede M (1986) A method of discriminating between different types of mid-oceanic ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  21. Parlak O, Delaloye M (1996) Geochemistry and timing of post-metamorphic dike emplacement in the Mersin ophiolite (southern Turkey): new age constraints from Ar–Ar geochronology. Terra Nova 8:585–592CrossRefGoogle Scholar
  22. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  23. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47CrossRefGoogle Scholar
  24. Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howels MF (eds) Marginal basin geology. Black-well, Oxford, pp 77−94Google Scholar
  25. Poisson A (1977) Recherches géologiques dans les Taurides occidentales (Turquie). Ph.D. thesis, Université de Paris-Sud (Orsay), FranceGoogle Scholar
  26. Robertson AHF (1994) Role of tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region. Earth Sci Rev 37:139–213CrossRefGoogle Scholar
  27. Sarp H (1976) Etude géologique et pétrographique du cortège ophiolitique de la région située au nord-ouest de Yeşilova (Burdur-Turquie). Ph.D. thesis, Université de Genève, 408 ppGoogle Scholar
  28. Sarp H, Poisson A, Vuagnat M (1985) Mise en place originelle et rotation secondaire des dykes diabasiques du complexe ophiolitique entre Salda Gol et Aci Gol (a l‘est de Denizli). In: İzdar E, Nakoman E (eds) Proceedings Sixth colluquim on geology of the Aegan Region, 19th September–4th October (1977), İzmir, Turkey 2:577–585Google Scholar
  29. Saunders AD, Tarnery J (1984) Geochemical characteristics of basaltic volcanism witihin back-arc basins. In: Kokelaar BP, Howells MF (eds) Marginal basin geology. Geol Soc London Spec Publ 16:59–76Google Scholar
  30. Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241CrossRefGoogle Scholar
  31. Shervais WJ (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:102–118CrossRefGoogle Scholar
  32. Smith AG, Hurley AM, Briden JC (1981) Phanerozoic palaeocontinental maps. Cambridge University Press, CambridgeGoogle Scholar
  33. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc London Spec Publ 42:313–345Google Scholar
  34. Thuizat R, Whitechurch H, Montigny R, Juteau T (1981) K–Ar dating of some infra-ophiolitic metamorphic soles from the eastern Mediterranean: new evidence for oceanic thrusting before obduction. Earth Planet Sci Lett 52:302–310CrossRefGoogle Scholar
  35. Zartman RE, Doe BR (1981) Plumbotectonics-the model. Tectonophysics 75:135–162CrossRefGoogle Scholar
  36. Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Kocaeli Üniversitesi, Jeoloji Mühendisliği BölümüKocaeliTurkey
  2. 2.Département de MinéralogieUniversité de GenèveGenevaSwitzerland

Personalised recommendations