International Journal of Earth Sciences

, Volume 96, Issue 6, pp 1003–1031 | Cite as

Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland

  • O. BourgeoisEmail author
  • M. Ford
  • M. Diraison
  • C. Le Carlier de  Veslud
  • M. Gerbault
  • R. Pik
  • N. Ruby
  • S. Bonnet
Original Paper


The development of the Alpine mountain belt has been governed by the convergence of the African and European plates since the Late Cretaceous. During the Cenozoic, this orogeny was accompanied with two major kinds of intraplate deformation in the NW-European foreland: (1) the European Cenozoic Rift System (ECRIS), a left-lateral transtensional wrench zone striking NNE-SSW between the western Mediterranean Sea and the Bohemian Massif; (2) long-wavelength lithospheric folds striking NE and located between the Alpine front and the North Sea. The present-day geometry of the European crust comprises the signatures of these two events superimposed on all preceding ones. In order to better define the processes and causes of each event, we identify and separate their respective geometrical signatures on depth maps of the pre-Mesozoic basement and of the Moho. We derive the respective timing of rifting and folding from sedimentary accumulation curves computed for selected locations of the Upper Rhine Graben. From this geometrical and chronological separation, we infer that the ECRIS developed mostly from 37 to 17 Ma, in response to north-directed impingement of Adria into the European plate. Lithospheric folds developed between 17 and 0 Ma, after the azimuth of relative displacement between Adria and Europe turned counter-clockwise to NW–SE. The geometry of these folds (wavelength = 270 km; amplitude = 1,500 m) is consistent with the geometry, as predicted by analogue and numerical models, of buckle folds produced by horizontal shortening of the whole lithosphere. The development of the folds resulted in ca. 1,000 m of rock uplift along the hinge lines of the anticlines (Burgundy–Swabian Jura and Normandy–Vogelsberg) and ca. 500 m of rock subsidence along the hinge line of the intervening syncline (Sologne–Franconian Basin). The grabens of the ECRIS were tilted by the development of the folds, and their rift-related sedimentary infill was reduced on anticlines, while sedimentary accumulation was enhanced in synclines. We interpret the occurrence of Miocene volcanic activity and of topographic highs, and the basement and Moho configurations in the Vosges–Black Forest area and in the Rhenish Massif as interference patterns between linear lithospheric anticlines and linear grabens, rather than as signatures of asthenospheric plumes.


Europe Alps Cenozoic Rifting Folding Buckling Moho Basement Lithosphere Crust 



This work was performed partly in 2000–2002, while OB and MD held post-doctoral positions supervised by MF at the Centre de Recherches Pétrographiques et Géochimiques of Nancy (CNRS-UPR 2300). We acknowledge financial support from the Région Lorraine, from the Bureau de Recherches Géologiques et Minières (Geofrance 3D project) and from the CNRS-INSU (Programme National Intérieur de la Terre 2001–2002, Theme V “Rapid vertical motions”). Sandhausen 4 and Spock 2 borehole data (Fig. 12) were made available by the Landesamt fur Geologie, Rohstoffe und Bergbau of Baden-Württemberg. We thank our colleagues of the EUCOR-URGENT project for inviting us to their annual workshops. Our results and interpretations benefited from constructive discussions with Sierd Cloetingh, François Guillocheau, Laurent Michon, Cécile Robin and Stefan Schmid. We thank Pierre Dèzes, Peter Ziegler and an anonymous reviewer for their critical comments on the manuscript.


  1. Abreu VS, Anderson JB (1998) Glacial eustasy during the Cenozoic: sequence stratigraphic implications. Am Assoc Petrol Geol Bull 82:1385–1400Google Scholar
  2. Ahorner L (1975) Present-day stress field and seismotectonic block movements along major fault zones in Central Europe. Tectonophysics 29:233–249Google Scholar
  3. Ahorner L (1983) Historical seismicity and present-day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs K, von Gehlen K, Melzer M, Murawski H, Semmel A (eds) Plateau uplift, the Rhenish shield—a case history. Springer, Berlin, pp 198–221Google Scholar
  4. Allen PA, Allen JR (1990) Basin analysis: principles and applications. Blackwell Science, Oxford, pp 1–451Google Scholar
  5. Allen PA, Homewood P, Williams GD (1986) Foreland basins: an introduction. Foreland basins symposium. Spec Publ Int Assoc Sedimentol 8:3–12Google Scholar
  6. Anderle HJ (1987) The evolution of the South Hunsrück and Taunus Borderzone. Tectonophysics 137:101–114Google Scholar
  7. Babushka V, Plomerova J (1992) The lithosphere in Central Europe—seismological and petrological approach. Tectonophysics 207:141–163Google Scholar
  8. Barbarand J, Lucazeau F, Pagel M, Séranne M (2001) Burial and exhumation history of the south-eastern Massif Central (France) constrained by apatite fission-track thermochronology. Tectonophysics 335:275–290Google Scholar
  9. Beaumont C (1979) On rheological zonation of the lithosphere during flexure. Tectonophysics 59:347–365Google Scholar
  10. Becker A (2000) The Jura Mountains—an active foreland fold-and-thrust belt? Tectonophysics 321:381–406Google Scholar
  11. Behrmann JH, Hermann O, Horstmann M, Tanner DC, Bertrand G (2003) Anatomy and kinematics of oblique continental rifting revealed: a three-dimensional case study of the southeast Upper Rhine graben (Germany). Am Assoc Petrol Geol Bull 87:1105–1121Google Scholar
  12. Berger JP, Reichenbacher B, Becker D, Grimm M, Grimm K, Picot L, Storni A, Pirkenseer C, Derer C, Schaefer A (2005a) Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. Int J Earth Sci 94:697–710Google Scholar
  13. Berger JP, Reichenbacher B, Becker D, Grimm M, Grimm K, Picot L, Storni A, Pirkenseer C, Schaefer A (2005b) Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Int J Earth Sci 94:711–731Google Scholar
  14. Bergerat F (1977a) Le rôle des décrochements dans les liaisons tectoniques entre le Fossé de la Saône et le Fossé Rhénan. C R Somm Soc Géol Fr 4:195–199Google Scholar
  15. Bergerat F (1977b) La fracturation dans l’avant-pays jurassien entre les fossés de la Saône et du Rhin. Analyse et essai d’interprétation dynamique. Rev Géogr Phys Géol Dyn 19:325–338Google Scholar
  16. Bergerat F (1987) Stress fields in the European platform at the time of Africa-Eurasia collision. Tectonics 6:99–132Google Scholar
  17. Bergerat F, Geyssant J (1980) La fracturation tertiaire de l’Europe du Nord: résultat de la collision Afrique-Europe. C R Acad Sci Paris Sér D 390:1521–1524Google Scholar
  18. Bergerat F, Mugnier JL, Guellec S, Trufferrt C, Cazes M, Damotte B, Roure F (1990) Extensional tectonics and subsidence of the Bresse basin: an interpretation from ECORS data. Mém Soc Géol Fr 156:145–156Google Scholar
  19. Blès JL, Gros Y (1991) Stress field changes in the Rhone Valley from the Miocene to the present. Tectonophysics 194:265–277Google Scholar
  20. Bourgeois O, Le Carlier de Veslud C, Ford M, Diraison M (2001) Propagation of the Alpine forebulge into the southern Upper Rhine Graben? In: Abstract of the 2nd EUCOR-URGENT Workshop, vol 8. Mont Saint-Odile, Strasbourg (France), 7–11 October 2001Google Scholar
  21. Bourgeois O, Ford M, Pik R, Le Carlier de Veslud C, Gerbault M, Diraison M, Ruby N, Bonnet S (2004) Vertical motions around the Rhine Graben: separation of rifting and lithospheric folding signatures. In: proceedings of the RST-GV international joint meeting, Strabourg (France), Abst. Number: RSTGV-A-00294Google Scholar
  22. Brun JP (1999) Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Philos Trans R Soc Lond A 357:695–712Google Scholar
  23. Brun JP, Gutscher MA, DEKORP-ECORS team (1992) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data. Tectonophysics 208:39–147Google Scholar
  24. Buck RW (1991) Modes of continental lithospheric extension. J Geophys Res 96:20161–20178Google Scholar
  25. Bull JM, Martinod J, Davy P (1992) Buckling of the oceanic lithosphere from geophysical data and experiments. Tectonics 11:537–548Google Scholar
  26. Burg JP, Van Den Driessche J, Brun JP (1994a) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol Fr 3:33–51Google Scholar
  27. Burg JP, Van Den Driessche J, Brun JP (1994b) Syn- to post-thickening extension: mode and consequences. C R Acad Sci II: Sciences de la Terre et des Planètes 319:1019–1032Google Scholar
  28. Burkhard M, Sommaruga A (1998) Evolution of the Western Swiss Molasse basin: structural relations with the Alps and the Jura belt. In: Mascles A, Puigdefàbregas C, Luterbacher HP, Fernàndez M (eds) Cenozoic foreland basins of Western Europe. Geol Soc (Lond) Spec Publ 134:279–298Google Scholar
  29. Burov EB, Lobkovsky LI, Cloetingh S, Nikishin AM (1993) Continental lithosphere folding in Central Asia (Part II): constraints from gravity and topography. Tectonophysics 226:73–87Google Scholar
  30. Caire A (1977) Interpretation unitaire des fosses des Limagnes, de la Bresse et du Rhin. C R Acad Sci Paris 285:1279–1281Google Scholar
  31. Chantraine J, Autran A, Cavelier A, et al (1996) Carte Géologique de la France à 1/000 000, 6th edn. Bur Rech Geol Min, Orléans (France)Google Scholar
  32. Chase CG, Libarkin JA, Sussman AJ (2002) Colorado plateau: geoid and means of isostatic support. Int Geol Rev 44:575–587Google Scholar
  33. Chorowicz J, Deffontaines B (1993) Transfer faults and pull-apart model in the Rhine graben from analysis of multisource data. J Geophys Res 98:14339–14351Google Scholar
  34. Choukroune P, Ballèvre M, Cobbold PR, Gautier Y, Merle O, Vuichard JP (1986) Deformation and motion in the western Alpine Arc. Tectonics 5:215–226Google Scholar
  35. Cloetingh S, Burov E, Poliakov A (1999) Lithosphere folding: primary response to compression? (from central Asia to Paris basin). Tectonics 18:1064–1083Google Scholar
  36. Coulon M (1992) La distension oligocène dans le nord-est du bassin de Paris (perturbation des directions d’extension et distribution des stylolites). Bull Soc Géol Fr 163:531–540Google Scholar
  37. Cox KG (1989) The role of mantle plumes in the development of continental drainage patterns. Nature 342:873–877Google Scholar
  38. Cox KG (1993) Continental magmatic underplating. Philos Trans R Soc Lond A 342:155–166Google Scholar
  39. Debrand-Passard S (ed) (1984) Synthèse Géologique du Sud-Est de la France, Mém BRGM 125:1–615, Bur Rech Géol Min, OrléansGoogle Scholar
  40. Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci 94:640––656Google Scholar
  41. Dewey JF, Windley BF (1988) Palaeocene-Oligocene tectonics of NW Europe. In: Morton AC, Parson LM (eds) Early tertiary volcanism and the opening of the NE Atlantic. Geol Soc (Lond) Spec Publ 39:25–31Google Scholar
  42. Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD (1989) Kinematics of the western Mediterranean. In: Coward MP, Dietrich D, Park RG (eds) Alpine tectonics. Geol Soc (Lond) Spec Publ 45:65–283Google Scholar
  43. Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the european cenozoic rift system; interaction of the Pyrenean and Alpine orogens with the foreland lithosphere. Tectonophysics 389:1–33Google Scholar
  44. Dèzes P, Schmid SM, Ziegler PA (2005) Reply to comments by L. Michon and O. Merle on “Evolution of the European Cenozoic Rift System; interaction of the Pyrenean and Alpine orogens with the foreland lithosphere” by P. Dèzes, S. M. Schmid and P. A. Ziegler. Tectonophysics 401:257–262Google Scholar
  45. Édel JB, Whitechurch H, Diraison M (2007) Seismicity wedge beneath the Upper Rhine Graben due to backwards alpine push? Tectonophysics 428:49–64Google Scholar
  46. Ford M, Lickorish WH (2004) Foreland basin evolution around the western Alpine arc. In: Joseph P, Lomas S (eds) New perspectives on Turbidites, the Grès d’Annot Sandstones, SE France. Geol Soc (Lond) Spec Publ 221:39–63Google Scholar
  47. Ford M, Duchêne S, Gasquet D, Vanderhaeghe O (2006) Two-phase orogenic convergence in the external and internal SW Alps. J Geol Soc (Lond) 163:815–826Google Scholar
  48. Gapais D, Cobbold PR, Bourgeois O, Rouby D, de Urreiztieta M (2000) Tectonic significance of fault-slip data. J Struct Geol 22:881–888Google Scholar
  49. Garcia-Castellanos D, Cloetingh S, van Balen R (2000) Modelling the middle Pleistocene uplift in the Ardennes-Rhenish Massif: thermo-mechanical weakening under the Eifel. Global Planet Changes 27:39–52Google Scholar
  50. Geluk MC, Duin EJT, Dusar M, Rijkers RHB, van den Berg MW, van Rooijen P (1994) Stratigraphy and tectonics of the Roer Valley Graben. Geol Mijnb 73:129–141Google Scholar
  51. Gerbault M (2000) At what stress level is the central Indian Ocean lithosphere buckling? Earth Planet Sci Lett 178:165–181Google Scholar
  52. Gerbault M, Burov EB, Poliakov ANB, Daignieres M (1999) Do faults trigger folding in the lithosphere? Geophys Res Lett 26:271–274Google Scholar
  53. Giamboni M, Wetzel A, Nivière B, Schumacher M (2004) Plio-Pleistocene folding in the southern Rhinegraben recorded by the evolution of the drainage network (Sundgau area; northwestern Swizerland and France). Eclogae Geol Helv 97:17–31Google Scholar
  54. Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, Friedenberg Garcia JP, Gaulier JM, Gaumet F, Grosdoy B, Hanot F, Le Strat P, Mettraux M, Nalpas T, Prijac C, Rigollet C, Serrano O, Grandjean G (2000) Meso-cenozoic geodynamic evolution of the Paris basin: 3D stratigraphic constraints. Geodin Acta 13:189–245Google Scholar
  55. Gutscher MA (1995) Crustal structure and dynamics in the Rhine Graben and the Alpine foreland, Geophys J Int 122:617–636Google Scholar
  56. Haimberger R, Hoppe A, Schäfer A (2005) High-resolution seismic survey on the Rhine River in the northern Upper Rhine Graben. Int J Earth Sci 94:657–668Google Scholar
  57. Hinzen KG (2003) Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 377:325–356Google Scholar
  58. Jones SM, White N, Clarke BJ, Rowley E, Gallagher K (2002) Present and past influence of the Iceland plume on sedimentation. Geol Soc (Lond) Spec Publ 196:13–25Google Scholar
  59. Jowett EC (1991) Post-collisional formation of the Alpine foreland rifts. Ann Soc Geol Pol 61:37–59Google Scholar
  60. Karg H, Carter A, Brix MR, Littke R (2005) Late- and post-Variscan cooling and exhumation history of the northern Rhenish massif and the southern Ruhr Basin: new constraints from fission-track analyses. Int J Earth Sci 94:180–192Google Scholar
  61. Keyser M, Ritter JRR, Jordan M (2002) 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet Sci Lett 203:59–82Google Scholar
  62. Kooi H, Cloetingh S (1992) Lithospheric necking and regional isostasy at extensional basins. J Geophys Res 97:17553–17591Google Scholar
  63. Kusznir NJ, Ziegler PA (1992) The mechanics of continental extension and sedimentary basin formation: a simple-shear/pure-shear flexural cantilever model. Tectonophysics 215:117–131Google Scholar
  64. Lacombe O, Jolivet L (2005) Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny. Tectonics 24:1–20Google Scholar
  65. Laubscher HP (1986) The eastern Jura: relations between thinskinned and basement tectonics, local and regional. Geol Rundsch 75:535–553Google Scholar
  66. Laubscher HP (1992) Jura kinematics and the Molasse Basin. Eclogae Geol Helv 85:653–675Google Scholar
  67. Laubscher HP (1998) The complex encounter of Rhine graben and Jura at the eastern margin of the Laufen Basin. Eclogae Geol Helv 91:275–291Google Scholar
  68. Lefort JP, Agarwal BNP (1996) Gravity evidence for an Alpine buckling of the crust beneath the Paris Basin. Tectonophysics 258:1–14Google Scholar
  69. Lefort JP, Agarwal BNP (2002) Topography of the Moho undulations in France from gravity data: their age and origin. Tectonophysics 350:193–213Google Scholar
  70. Leseur N, Mollier M, Ford M, Bourlange S, Bourgeois O (2005) Three dimensional flexure of the European plate north of the Alps. In: proceedings of the SGF-SGE joint earth science meeting on thrust belts and foreland basins, Rueil-Malmaison (France), 14–16 December 2005Google Scholar
  71. Link K, Rahn M, Keller J, Stuart F, Diskin S (2003) Thermo-tectonic evolution of the Upper Rhine Graben rift flanks constrained by FT and (U-Th/He) analyses. In: Abstract of the 4th EUCOR-URGENT Workshop, vol 35. Basel (Switzerland), 29 September–1 October 2003Google Scholar
  72. Lithgow-Bertelloni C, Silver PG (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395:269–272Google Scholar
  73. Martinod J, Davy P (1992) Periodic instabilities during compression of the lithosphere 1. Deformation modes from an analytical perturbation method. J Geophys Res 92:1999–2014Google Scholar
  74. Martinod J, Davy P (1994) Periodic instabilities during compression of the lithosphere 2. Analogue experiments. J Geophys Res 99:12057–12069Google Scholar
  75. Martinod J, Molnar P (1995) Lithospheric folding in the Indian Ocean and the rheology of the oceanic plate. Bull Soc Géol Fr 166:813–821Google Scholar
  76. McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32Google Scholar
  77. McKenzie (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765Google Scholar
  78. Mégnien C (ed) (1980) Synthése Géologique du Bassin de Paris I, II and III. Mém BRGM 102–103:1–467, Bur Rech Géol Min, OrléansGoogle Scholar
  79. Merle O, Michon L (2001) The formation of the West European rift: a new model as exemplified by the Massif Central area. Bull Soc Géol Fr 172:213–221Google Scholar
  80. Merle O, Michon L, Camus G, De Goer A (1998) Oligocene extensional processes along the northern transect of the Massif central rift (France). Bull Soc Géol Fr 169:615–626Google Scholar
  81. Meyer W, Stets J (2002) Pleistocene to recent tectonics in the Rhenish Massif (Germany). Neth J Geosci 81:217–221Google Scholar
  82. Michon L (2000) Dynamique de l’Extension Continentale—Application au Rift Ouest-Européen par l’Étude de la Province du Massif Central. Unpublished Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand (France)Google Scholar
  83. Michon L, Merle O (2001) The evolution of the Massif Central rift: spatio-temporal distribution of the volcanism. Bull Soc Géol Fr 172:201–211Google Scholar
  84. Michon L, Merle O (2005) Discussion on “Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere” by P. Dèzes, S. M. Schmid and P. A. Ziegler. Tectonophysics 401:251–256Google Scholar
  85. Michon L, van Balen RT, Merle O, Pagnier H (2003) The cenozoic evolution of the Roer Valley rift system integrated at a European scale. Tectonophysics 367:101–126Google Scholar
  86. Munck F, Sauer K (eds) (1979) Synthése Géothermique du Fossé Rhénan Supérieur. Bur Rech Geol Min Alsace/Geol Landesamt Baden-Wurttemberg. Strasbourg (France)/Freiburg (Germany)Google Scholar
  87. Neugebauer HJ (1978) Crustal doming and mechanisms of rifting: part 1. Rift formation. Tectonophysics 45:159–186Google Scholar
  88. Peyaud JB, Barbarand J, Carter A, Pagel M (2005) Mid-cretaceous uplift and erosion on the northern margin of the Ligurian Tethys deduced from thermal history reconstruction. Int J Earth Sci 94:462–474Google Scholar
  89. Philippe Y, Colletta B, Mascle E (1996) The Jura fold-and-thrust belt: a kinematic model based on map-balancing. In: Ziegler PA, Horvath F (eds) Structure and prospects of Alpine basins and forelands. Peri-Tethys Mem 2, Mém Mus Natl Hist Nat Paris 170:235–261Google Scholar
  90. Prodehl C, Mueller S, Glahn A, Gutscher M, Haak V (1992) Lithospheric cross sections of the European cenozoic rift system. Tectonophysics 208:113–138Google Scholar
  91. Regenauer-Lieb K, Petit JP (1997) Cutting of the European continental lithosphere: plasticity theory applied to the present Alpine collision. J Geophys Res 102:7731–7746Google Scholar
  92. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14Google Scholar
  93. Roll A (1979) Versuch einer Volumenbilanz des Oberrheingrabens und seiner Schultern. Geol Jahrb A52:1–82Google Scholar
  94. Rosenbaum G, Lister GS (2004) Neogene and quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23:TC1013Google Scholar
  95. Rosenbaum G, Lister GS, Duboz C (2002) Relative motion of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359:117–129Google Scholar
  96. Rotstein Y, Schaming M, Rousse S (2005) Tertiary tectonics of the Dannemarie basin, Upper Rhine Graben, and regional implications. Int J Earth Sci 94:669–679Google Scholar
  97. Rousset D, Bayer R, Guillon D, Edel JB (1993) Structure of the southern Rhine Graben from gravity and reflection seismic data (ECORS-DEKORP program). Tectonophysics 221:135–153Google Scholar
  98. Schäfer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The cenozoic Lower Rhine basin—rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639Google Scholar
  99. Schettino A, Scotese C (2002) Global kinematic constraints to the tectonic history of the Mediterranean region and surrounding areas during the Jurassic and Cretaceous. In: Rosenbaum G, Lister GS (eds) Reconstruction of the evolution of the Alpine-Himalayan orogen. J Virtual Explor 8:145–160Google Scholar
  100. Schmid SM, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85Google Scholar
  101. Schumacher ME (2002) Upper Rhine Graben: the role of preexisting structures during rift evolution. Tectonics 21:1–17. doi: 10.1029/2001TC900022 Google Scholar
  102. Schwab K (1987) Compression and right-lateral strike-slip movement at the Southern Hunsrück Borderfault (Southwest Germany). Tectonophysics 137:115–122Google Scholar
  103. Schwarz M, Henk A (2005) Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling. Int J Earth Sci 94:732–750Google Scholar
  104. Sengör AMC (1976) Collision of irregular continental margins: implications for foreland deformation of Alpine-type orogens. Geology 4:779–782Google Scholar
  105. Sengör AMC, Burke K, Dewey JF (1978) Rifts at high angles to orogenic belts: tests for their origin and the Upper Rhine Graben as an example. Am J Sci 278:24–40CrossRefGoogle Scholar
  106. Séranne M (1999) The Gulf of Lion continental margin (NWMediterranean) revisited by IBS: an overview. In: Durand B, Jolivet L, Horvath F, Séranne M (eds) The Mediterranean Basins: tertiary extension within the Alpine orogen. Geol Soc (Lond) Spec Publ 156:15–36Google Scholar
  107. Sinclair HD, Coakley BJ, Allen PA, Watts AB (1991) Simulation of foreland basin stratisgraphy using a diffusion model of mountain belt uplift and erosion: an example from the central Alps, Switzerland. Tectonics 10:599–620CrossRefGoogle Scholar
  108. Sissingh W (1998) Comparative tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse basin: correlation of Alpine foreland events. Tectonophysics 300:249–284Google Scholar
  109. Sissingh W (2003) Tertiary paleogeographic and tectonostratigraphic evolution of the rhenish triple junction. Palaeogeogr Palaeoclimatol Palaeoecol 196:229–263Google Scholar
  110. Sommaruga A (1999) Decollement tectonics in the Jura foreland fold-and-thrust belt. Mar Petrol Geol 16:111–134Google Scholar
  111. Stampfli GM, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction processes in the Alps. Tectonophysics 296:159–204Google Scholar
  112. Stewart J, Watts AB (1997) Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J Geophys Res 102:5327–5352Google Scholar
  113. Tapponnier P (1977) Évolution tectonique du système Alpin en Mediterranée: poinçonnement et écrasement rigide-plastique. Bull Soc Géol Fr Sér 7 19:437–460Google Scholar
  114. Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge (UK), pp 1–528Google Scholar
  115. Van Balen RT, Houtgast RF, Van der Wateren FM, Vandenberghe J (2002) Neotectonic evolution and sediment budget of the Meuse catchment in the Ardennes and the Roer Valley Rift System. In: Schäfer A, Siehl A (eds) Rift tectonics and syngenetic sedimentation—the Cenozoic Lower Rhine basin and related structures. Neth J Geosci Geol Mijnb 81:211–215Google Scholar
  116. Watts AB (2001) Isostasy and flexure of the lithosphere. Cambridge University Press, Cambridge (UK), pp 1–480Google Scholar
  117. Zeyen H, Novak O, Landes M, Prodehl C, Driard L, Hirn A (1997) Refraction-seismic investigations of the northern Massif Central (France). Tectonophysics 275:99–117Google Scholar
  118. Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the Western Tethys. Am Assoc Petrol Geol Mem 43:198Google Scholar
  119. Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd edn. Shell Internat Petrol Mij, distributed by Geol Soc Publ House, Bath, pp 1–239, 56 enclGoogle Scholar
  120. Ziegler PA (1994) Cenozoic rift system of western and central Europe: an overview. Geol Mijnb 73:99–127Google Scholar
  121. Ziegler PA, Cloetingh S, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59Google Scholar
  122. Ziegler PA, Cloetingh S (2004) Dynamic processes controlling evolution of rifted basins. Earth Sci Rev 64:1–50Google Scholar
  123. Ziegler PA, van Wees JD, Cloetingh S (1998) Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300:103–129Google Scholar
  124. Ziegler PA, Schumacher M, Dèzes P, van Wees JD, Cloetingh S (2004) Post-variscan evolution of the lithosphere in the Rhine Graben area: constraints from subsidence modelling. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-carboniferous magmatism and rifting in Europe. Geol Soc (Lond) Spec Publ 222:289–317Google Scholar
  125. Ziegler PA, Dèzes P (2005) Evolution of the lithosphere in the area of the Rhine Rift System. Int J Earth Sci 94:594–614Google Scholar
  126. Zijerveld L, Stephenson R, Cloetingh S, Duin E, Van Den Berg MW (1992) Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics 208:159–171Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • O. Bourgeois
    • 1
    Email author
  • M. Ford
    • 2
  • M. Diraison
    • 3
  • C. Le Carlier de  Veslud
    • 2
  • M. Gerbault
    • 4
  • R. Pik
    • 2
  • N. Ruby
    • 2
  • S. Bonnet
    • 2
  1. 1.Laboratoire de Planétologie et de Géodynamique, UMR CNRS 6112, Université de NantesNantes CedexFrance
  2. 2.Centre de Recherches Pétrographiques et Géochimiques, UPR CNRS 2300Vandoeuvre les NancyFrance
  3. 3.Institut de Physique du Globe de Strasbourg, UMR CNRS 7516, Centre de Géochimie de la Surface, UMR CNRS 7517Strasbourg CedexFrance
  4. 4.Institut de Recherche pour le Développement, Dpto geologia, Universitad de ChileSantiagoChili

Personalised recommendations