International Journal of Earth Sciences

, Volume 97, Issue 3, pp 497–518 | Cite as

Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review

  • J. Kalvoda
  • O. Babek
  • O. Fatka
  • J. Leichmann
  • R. Melichar
  • S. Nehyba
  • P. Spacek
Original Paper


The Brunovistulian terrane represents a microcontinent of enigmatic Proterozoic provenance that was located at the southern margin of Baltica in the early Paleozoic. During the Variscan orogeny, it represented the lower plate at the southern margin of Laurussia, involved in the collision with the Armorican terrane assemblage. In this respect, it resembles the Avalonian terrane in the west and the Istanbul Zone in the east. There is a growing evidence about the presence of a Devonian back-arc at the margin of the Brunovistulian terrane. The early Variscan phase was characterized by the formation of Devonian extensional basins with the within-plate volcanic activity and formation of narrow segments of oceanic crust. The oldest Viséan flysch of the Rheic/Rhenohercynian remnant basin (Protivanov, Andelska Hora and Horní Benesov formations) forms the highest allochthonous units and contains, together with slices of Silurian Bohemian facies, clastic micas from early Paleozoic crystalline rocks that are presumably derived from terranes of Armorican affinity although provenance from an active Brunovistulian margin cannot be fully excluded either. The development of the Moravo–Silesian late Paleozoic basin was terminated by coal-bearing paralic and limnic sediments. The progressive Carboniferous stacking of nappes and their impingement on the Laurussian foreland led to crustal thickening and shortening and a number of distinct deformational and folding events. The postorogenic extension led to the formation of the terminal Carboniferous-early Permian Boskovice Graben located in the eastern part of the Brunovistulian terrane, in front of the crystalline nappes. The highest, allochthonous westernmost flysch units, locally with the basal slices of the Devonian and Silurian rocks thrusted over the Silesicum in the NW part of the Brunovistulian terrane, may share a similar tectonic position with the Giessen–Harz nappes. The Silesicum represents the outermost margin of the Brunovistulian terrane with many features in common with the Northern Phyllite Zone at the Avalonia–Armorica interface in Germany.


Bohemian Massif Brunovistulian terrane Paleogeography Tectonic structure Variscan orogeny 


  1. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143Google Scholar
  2. Babek O (1996) Thinning and fining upward megasequences in Middle Devonian carbonate slope deposits, Moravia (Czech Republic). N Jb Geol Paläont Abh 202:409–432Google Scholar
  3. Babek O, Mikulas R, Zapletal J, Lehotsky T (2004) Combined tectonic-sediment supply-driven cycles in a Lower Carboniferous deep-marine foreland basin, Moravice Formation, Czech Republic. Int J Earth Sci 93(2):241–261Google Scholar
  4. Babek O, Tomek C, Melichar R, Kalvoda J, Otava J (2006) Structure of unmetamorphosed Variscan tectonic units of the southern Moravo–Silesian zone, Bohemian Massif: a review. N Jb Geol Paläont Abh 239:37–75Google Scholar
  5. Belka Z (1987) The development and decline of the Dinantian carbonate platform: an example from the Moravia–Silesia Basin. In: Adams AE, Miller J, Wright VP (eds) European Dinantian environments. Wiley, Chichester, pp 177–188Google Scholar
  6. Belka Z, Ahrendt H, Franke W, Wemmer K (2000) The Baltica–Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovite and biogeographical data. In: Franke W, Altherr R, Haak W, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt of Central Europe. Geological Society, London, Special Publications, vol 179, pp 87–102Google Scholar
  7. Belka Z, Valverde-Vaquero P, Dörr W, Ahrendt H, Wemmer K, Franke W, Schäfer J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications, vol 201, pp 19–36Google Scholar
  8. Bender P, Herbig H-G, Gursky H-J, Amler RW (1993) Beckensedimente im Oberdevon und Unterkarbon des östlichen Rheinischen Schiefergebirges. Geol Palaeontol 27:332–355Google Scholar
  9. Bielik M, Kloska K, Meurers B, Svancara J, Wybraniec S, Fancsik T, Grad M, Grand T, Guterch A, Katona M, Krolikowski C, Mikuska J, Pasteka R, Petecki Z, Polechonska O, Ruess D, Szalaiova V, Sefara J, Vozar J (2006) Gravity anomaly map of the CELEBRATION 2000 region. Geol Carpathica 57(3):145–156Google Scholar
  10. Birkelbach M, Dörr W, Franke W, Michel H, Stibane F, Weck R (1988) Die geologische Entwicklung der östlichen Lahnmulde (Exkursion C am 7 April 1998). Jber Mitt Oberrhein Geol Ver NF 70:43–74Google Scholar
  11. Bula Z, Jachowicz M (1996) The Lower Paleozoic sediments in the Upper Silesian Block. Geol Q 40:299–336Google Scholar
  12. Chab J (1990) The problem of the Andělská hora thrust in the light of new deep bores (Hrubý Jesník MTs., Czechoslovakia). Cas Miner Geol 35:389–401Google Scholar
  13. Chab J, Fediuková E, Fisera M, Novotny P, Opletal M (1990) Variscan orogeny in the Silesicum (In Czech). Sbor Geol Ved Lozisk Geol Mineral 29:9–39Google Scholar
  14. Chadima M, Melichar R (1998) Tectonics of Paleozoic rocks in the central part of the Drahany Upland (In Czech). Prír Studie Muz Prostejovska 1:39–46Google Scholar
  15. Chappel BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26Google Scholar
  16. Chlupac I (1964) K stratigrafickemu deleni moravskeho devonu. Cas Mineral Geol 9:309–316Google Scholar
  17. Chlupac I (1965) Fortschritte in der Stratigraphie des Mährischen (Ostsudetischen) Devons. Geol Rundsch 54:1003–1025Google Scholar
  18. Chlupac I (1975) Nove nalezy fauny v metamorfovanem devonu Hrubeho Jeseniku a jejich vyznam. Cas Mineral Geol 20:259–271Google Scholar
  19. Chlupac I (1989) Fossil communities in the metamorphic Lower Devonian of the Hrubý Jeseník Mts., Czechoslovakia. N Jb Geol Paläont Abh 177:367–392Google Scholar
  20. Chlupac I (1981) Homalonotid trilobites from the metamorphic Devonian of the Hruby Jeseník Mts., Czechoslovakia. Cas Mineral Geol 26:361–370Google Scholar
  21. Chlupac I, Svoboda J (1963) Geological conditions of the Konice–Mladec Devonian in the Drahany Upland (In Czech). Sbor Ustr Ust Geol 28:347–418Google Scholar
  22. Chlupac I, Vrana S (eds) (1994) Regional geological subdivision of the Bohemian Massif on the territory of the Czech Republic. J Czech Geol Soc 39(1):127–144Google Scholar
  23. Chlupac I, Brzobohaty R, Kovanda J, Stranik Z (2002) Geological History of the Czech republic. Academia, Prague, pp 1–436 (in Czech)Google Scholar
  24. Chlupac I, Havlicek V, Kriz J, Kukal Z, Storch P (1992) Paleozoikum Barrandienu (kambrium-devon). Cesky geologicky ustav Praha, pp 1–292Google Scholar
  25. Cizek P, Tomek C (1991) Large-scale thin-skinned tectonics in the Eastern boundary of the Bohemian Massif. Tectonics 10:273–286CrossRefGoogle Scholar
  26. Cocks LRM (2002) Key Lower Palaeozoic faunas from near the trans-European Suture Zone. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications, vol 201, pp 37–46Google Scholar
  27. Cocks LRM, Fortey RA (1982) Faunal evidence for oceanic separations in the Palaeozoic of Britain. J Geol Soc Lond 139:465–478Google Scholar
  28. Copjaková R, Sulovský P, Paterson BA (2005) Major and trace elements in pyrope–almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments, Drahany Uplands, Bohemian Massif. Lithos 82:51–70Google Scholar
  29. Courjault-Radé P, Debrenne F, Gandin A (1992) Palaeogeographic and geodynamic evolution of the Gondwana continental margins during the Cambrian. Terra Nova 4:657–667Google Scholar
  30. Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo–Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153Google Scholar
  31. Dallmeyer DR, Fritz H, Neubauer F, Urban K (1994) 40Ar/39Ar mineral age controls on the tectonic evolution of the southeastern Bohemian Massif. Pre-alpine Crust in Austria, Excursion guide "Geology of the Moravian Zone”, Krems, pp 14–22Google Scholar
  32. Dirnhofer M (1996) Zur Geologie und Petrographie des kristallinen Untergrundes der Molassezone in Niederösterreich. MSc thesis Univ Salzburg, pp 1–157Google Scholar
  33. Dörr W (1986) Stratigraphie, Stoffbestand und Fazies der Giessener Grauwacke (östliches Rheinisches Schiefergebirge) Diss. Universität Giessen, pp 1–134Google Scholar
  34. Dörr W (1990) Stratigraphie, Stoffbestand und Fazies der Giessener Geauwacke (östliches Rheinisches Scjiefergebirge). Geol Abh Hessen 91:1–94Google Scholar
  35. Dörr W (1998) Gießener Grauwacke. Jb Nassauisch Ver Nat Sonderb 1:66–71Google Scholar
  36. Dörr W, Franke W (2002) Sediment–Geologie des rhenohercynischen Ozeans (Lizard-Gießen-Harz). In: Hinderer H, Götz AE, Petschik R (eds) Sediment 2002, field trips and short courses, Schriftenreihe der Deutschen Geologischen Gesellschaft 18:5–22Google Scholar
  37. Dörr W, Preiss R (1982) Die Geologie des Nauborner Kopfes und seiner Umgebung. Giessener Geol Schriften 31:1–224Google Scholar
  38. Dörr W, Franke W, Kramm U (1992a) Stammt der Andreasteich-Quartzit bei Giessen von Baltica oder Gondwana? U-Pb Signaturen detritischer Zirkone. Giessener Geologische Schriften 48:43–59Google Scholar
  39. Dörr W, Pique A, Franke W, Kramm U (1992b) Les galets granitiques du conglomerat de Russ (Devono-Dinantien des Vosges du Nord) sont les temoins d´un magmatisme acide ordovicien. La distension crustale et le rifting saxothuringien au Paleozoiques inferieur. CR Acad Sci Paris, vol 315, series 2, pp 587–594Google Scholar
  40. Dörr W, Floyd PA, Leveridge BE (1999) U–Pb ages and geochemistry of granite pebbles from the Devonian Menaver Conglomerate, Lizard peninsula, provenance of Rhenohercynian flysch of SW-England. Sediment Geol 124:131–147Google Scholar
  41. Dreesen R, Kasig W, Paproth E, Wilder H (1985) Recent investigations within Devonian and Carboniferous North and South of the Stavelot–Venn Massif. N Jb Geol Abh 171(1–3):237–265Google Scholar
  42. Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulicum (In Czech). Rozpr Ces Akad ved R Mat Prír ved 90:1–85Google Scholar
  43. Dvorak J (1973) Synsedimentary tectonics of the Paleozoic of the Drahany Upland (Sudeticum, Moravia, Czechoslovakia). Tectonophysics 17:359–391Google Scholar
  44. Dvorak J (1994) Variscan flysch evolution of the Nízký Jesenik Mts. in Moravia and Silesia (In Czech). Czech Geol Surv Spec Papers, vol 3, pp 1–77Google Scholar
  45. Dvorak J, Friakova O (1978) Stratigraphy of the Palaeozoic near Hranice na Morave. Vyzk pr Ustr Ust Geol 18:1–50Google Scholar
  46. Dvorak J, Friakova O, Hladil J, Kalvoda J, Kukal Z (1987) Geology of the Palaeozoic rocks in the vicinity of the Mokra Cement Factory quarries (Moravian Karst) (In Czech). Sbor geol Ved, Geologie 42:41–88Google Scholar
  47. Edel JB, Schulmann K, Holub FV (2003) Anticlockwise and clockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: palaeomagnetic and structural evidence. J Geol Soc 160:209–218Google Scholar
  48. Engel W, Franke W (1983) Flysch sedimentation: its relations to tectonism in the European Variscides. In: Martin H, Eder FW (eds) Intracontinental Fold Belts. Springer, Berlin Heidelberg New York, pp 289–322Google Scholar
  49. Engel W, Franke W, Langenstrassen F (1983) Palaeozoic sedimentation in the northern branch of the Mid-European Variscides: essay of an interpretation. In: Martin H, Eder FW (eds) Intracontinental Fold Belts. Springer, Berlin Heidelberg New York, pp 9–41Google Scholar
  50. Fatka O, Vavrdova M (1998) Early Cambrian Acritarcha from sediments underlaying the Devonian in Moravia (Menin-1 borehole, southern Moravia). Bull Czech Geol Surv 73:55–60Google Scholar
  51. Finger F, Steyrer HP (1995) A tectonic model for the eastern Variscides: indications from a chemical study of amphibolites in the southeastern Bohemian Massif. Geol Carpathica 46:137–150Google Scholar
  52. Finger F, Riegler G (1999) Der Thayabatholith und der kristalline Untergrund des Weinviertels. In: Roetzel R (ed) Arbeitstagung Geol. Bundesanstalt, Wien, pp 23–31Google Scholar
  53. Finger F, Frasl G, Haunschmid B, Lettner H, Quadt A von, Schermaier A, Schindlmayr AO, Steyrer HP (1993) The Zentralgneisse of the Tauern Window (eastern Alps): insight into an intra- Alpine Variscan batholith. In: Raumer von J, Neubauer F (eds) The Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 375–391Google Scholar
  54. Finger F, Frasl G, Dudek A, Jelinek E, Thöni M (1995) Cadomian plutonism in the Moravo–Silesian basement. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 495–507Google Scholar
  55. Finger F, von Quadt A, Pin C, Steyrer HP (1998) The ophiolite chain along the western Moravo–Silesian plate margin; a trace of the Rheic Suture? Acta Univ Carol Geol 42:244–245Google Scholar
  56. Finger F, Hanzl P, Pin C, Quadt A, Steyrer HP (2000a) The Brunovistulicum: Avalonian Precambrian at the eastern end of the Variscides. In: Franke W, Altherr R, Haak W, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt of Central Europe. Geological Society, London, Special Publications, vol 179, pp 103–112Google Scholar
  57. Finger F, Tikhomirova M, Pin C, Hanzl P (2000b) Relics of an early-Pan-African metabasite-metarhyolite formation in the Brno Massif, Moravia, Czech Republic. Int J Earth Sci 89:328–335Google Scholar
  58. Fisera M, Patocka F (1989) Geochemistry of Variscan blastomylonites of the Vidly pod Pradedem locality, the Hruby Jesenik Mts.: paleotectonic implications. Vest Ustr Ust geol 64:301–312Google Scholar
  59. Floyd PA (1995) III.B.3 Igneous Activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 59–81Google Scholar
  60. Francu E, Francu J, Kalvoda J, Polcheau HS, Otava J (2002) Burial and uplift history of the Palaeozoic Flysch in the Variscan foreland basin (SE Bohemian Massif, Czech Republic). Spec Publ EGS Stephen Mueller Ser 1:259–278Google Scholar
  61. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Spec Pap (Geol Soc Am) 230:67–89Google Scholar
  62. Franke W (1995a) III.A Introduction. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 29–30Google Scholar
  63. Franke W (1995b) III.B.1 Stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 33–49Google Scholar
  64. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications, vol 179, pp 35–61Google Scholar
  65. Franke W (2002) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications, vol 201, pp 35–61Google Scholar
  66. Franke W, Oncken O (1990) Geodynamic evolution of the North-Central Variscides: a comic strip. In: Freeman R, Giese P, Mueller S (eds) The European geotraverse: integrative studies (eds) Results from the 5th Study Centre 26.3–7.4.1990, European Science Foundation, Strassbourg, pp 187–194Google Scholar
  67. Franke W, Oncken O (1995) Zur prädevonischen Geschichte des Rhenohercynischen Beckens. Nova Acta Leopoldina NF 71:53–72Google Scholar
  68. Franke W, Zelazniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications, vol 201, pp 279–293Google Scholar
  69. Franke W, Eder W, Engel W (1975) Sedimentology of a Lower Carboniferous shelf-margin (Velbert Anticline, Rheinisches Schiefergebirge, W-Germany). N Jahrb Geol Paleontol Abh 150:314–353Google Scholar
  70. Franke W, Dallmeyer RD, Weber K (1995) Geodynamic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 579–593Google Scholar
  71. Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America derived Gondwana fragments in central Europe. Geology 28(11):1035–1038Google Scholar
  72. Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U-Pb zirkon agens. Int J Earth Sci 9:802–823Google Scholar
  73. Frisch W, Neubauer F (1989) Pre-Alpine terranes and tectonic zoning in the eastern Alps. Geol Soc Am Spec Pap 230:91–100Google Scholar
  74. Frisch W, Vavra G, Winkler M (1993) Evolution of the Penninic basement of the eastern Alps. In: Raumer J von, Neubauer F (eds) The Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 349–360Google Scholar
  75. Fritz H, Neubauer F (1995) Moravo–Silesian Zone; Autochthon; Structure. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 490–494Google Scholar
  76. Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol Bundes Wien 119:45–61Google Scholar
  77. Gee D (2001) Overview of the Timanide Orogen along the Eastern Margin of the East European Craton. Joint meeting of EUROPROBE, TESZ, TIMPEBAR, URALIDES & SW Iberia Projects, Ankara 30 September–2 October, 2001. Abstracts, 19–20Google Scholar
  78. Gilikova H, Leichmann J, Patocka F (2003) Early Palaeozoic clastic sediments found in Boreholes from the SE Surroundings of Brno (Czech Republic). Geolines 16:30–31Google Scholar
  79. Gladysz J, Jachowicz M, Piekarski K (1990) Paleozoic Acritarcha from the Siewierz vicinity (northern margin of the Upper Silesian coal basin). Geol Q 34:623–646Google Scholar
  80. Glassmacher UA, Reynold P, Alekseyev A, Puchkov VN, Taylor K, Gorozhanin V, Walter R (1999) 40Ar/39Ar Thermochronology west of the Main Uralian fault, southern Urals, Russia. Geol Rundsch 87:515–525Google Scholar
  81. Gnojek I., Hubatka F (2001) Structure of the Brunovistulian Unit (E part of the Czech Republic) on the basis of seismic and magnetic data. Bull Czech Geol Surv 76(3):157–168Google Scholar
  82. Grabowski J, Nawrocki J, Babek O, Tomek C (2004a) Paleomagnetism of Devonian/Carboniferous carbonates of the Moravian region. International Workshop Evolution of the geological environment in palaeomagnetic studies: Current topics and problems Sponsored by EU research centre GEODEV. Programme and Abstracts. Institute of Geophysics, Warsaw, Poland, p 6Google Scholar
  83. Grabowski J, Nawrocki J, Babek O, Tomek C (2004b) Paleomagnetism of Devonian carbonates of Moravo–Silesian zone (Czech republic): does it support the eastern Variscan orocline model? European Geosciences Union 2004. Geophysical Research Abstracts, vol 6Google Scholar
  84. Grygar R, Vavro M (1995) Evolution of Lugosilesian Orocline (North-eastern periphery of the Bohemian Massif): Kinematics of Variscan deformation. J Czech Geol Soc 40:65–90Google Scholar
  85. Hanzl P (1999) Geochemistry of Devonian basalts from the vicinity of Stinava, Drahany Upland, Central Moravia (In Czech). Prir studie Muz Prostejovska 2:43–48Google Scholar
  86. Hanzl P, Melichar R (1997) Brno Massif: a section through the active continental margin or a composed terrane? Krystalinikum 23:33–58Google Scholar
  87. Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: The Lower Carboniferous Culm Basin, Czech Republic. J Geol Soc Lond 158:137–150CrossRefGoogle Scholar
  88. Hartz E, Torsvik TH (2002) Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 30:255–258Google Scholar
  89. Havir J (2000) The results of paleostress analyses in the eastern parts of the Nizky Jesenik and the Drahany Uplands. Bull Czech Geol Surv 75:27–32Google Scholar
  90. Havlena V (1976) Late Paleozoic paleogeography of Czechoslovakia and the Plzen basin (In Czech). Folia Mus Rer Nat Bohem Occident Geol 7:1–31Google Scholar
  91. Hladil J (1994) Moravian middle and late Devonian buildups: evolution in time and space with respect to the Laurussian shelf. Courier Forsch-Inst Senckenberg 172:111–125Google Scholar
  92. Hladil J (1995) Arguments in favour of clockwise block rotation in Variscides of Moravia – analyzing the Devonian facies disjunctions (In Czech). Geol vyzk Mor Slez 2:44–48Google Scholar
  93. Hladil J, Bek J (1999) Distances between the early/middle Devonian Gondwana and Laurussia: faunal and spore dispersals as compared with paleomagnetic data on paleolatitudes. Explor Geophys Rem Sens Environ 4:29–33Google Scholar
  94. Hladil J, Cejchan P (1994) Metamorphosed carbonates of Silesicum near Velke Vrbno; wonderful pseudo-fossils and very unclear remnants of real fossils (In Czech). Geol vyzk Mor Slez 1:37–41Google Scholar
  95. Hladil J, Kalvoda J, Vavrdova M (1987) Some new micropaleontological data from the Nizky Jesenik Mts (In Czech). Zemni Plyn Nafta, Misc Micropalaeont 2:97–118Google Scholar
  96. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Cejchan P, Orel P (1999) The Devonian in the Easternmost Variscides, Moravia; a holistic analysis directed towards comprehension of the original context. Abh Geol BA 54:27–47Google Scholar
  97. Höck V, Montag O, Leichmann J (1997) Ophiolite remnants at the eastern margin of the Bohemian Massif and their bearing on the tectonic evolution. Mineral Petrol 60:267–287Google Scholar
  98. Jachowicz M, Prichystal A (1997) Lower Cambrian sediments in deep boreholes in south Moravia. Bull Czech Geol Surv 72:329–332Google Scholar
  99. Janousek V, Hanzl P, Aichler J, Pecina V, Erban V, Wilimsky D, Zacek V, Mixa P, Buriankova K, Pudilova M, Chlupacova M (2006) Contrasting Petrogenesis of two Volcanic Suites in the Devonian Vrbno Group (Hruby Jesenik Mts., Czech Republic). Geolines 20:57–59Google Scholar
  100. Jaros J (1961) Geological evolution of the southern part of Boskovice Furrow (In Czech). Acta Acad Sci Czechosloven Basis Brunensis 32:545–569Google Scholar
  101. Jedlicka J, Pecina V (1990) Chemism of metabasites from Sucha Rudna, Vrbno Group, Hruby Jesenik Mts. Vestnik Ustredniho ustavu geologickehoi 65(5):301–313Google Scholar
  102. Jelínek E, Dudek A (1993) Geochemistry of subsurface Precambrian plutonic rocks from the Brunovistulian complex in the Bohemian massif, Czechoslovakia. Precambr Res 62:103–125Google Scholar
  103. Kalvoda J (1982a) Biostratigraphy and palaeobiogeography of the Famennian and Lower Carboniferous in southeastern and eastern Moravia. Zemni Plyn Nafta 26(4):571–584Google Scholar
  104. Kalvoda J (1982b) Contribution to the position of the Lower Carboniferous foraminiferal fauna from Moravia in reconstructions of the paleobiogeographical dispersal of foraminifera in Europe. Acta Univ Carolinae Paleontol 4:329–240Google Scholar
  105. Kalvoda J (1995) Devonian basins at the margin of Eastern Avalonia in Moravia (In Czech). Geol vyzk Mor Slez 2:48–50Google Scholar
  106. Kalvoda J (1998) The main phases of extension in the eastern part of the Rhenohercynian Zone. Acta Univ Carolinae Geol 42:274–275Google Scholar
  107. Kalvoda J (2001) Upper Devonian: Lower Carboniferous foraminiferal paleobiogeography and Perigondwana terranes at the Baltica—Gondwana interface. Geol Carpathica 52:205–215Google Scholar
  108. Kalvoda J (2002) Late Devonian-Early Carboniferous foraminiferal fauna: zonations, evolutionary events, palebiogeography and tectonic implications. Folia Fac Sci Natur Univ Masarykianae Brunensis Geol 39:1–213Google Scholar
  109. Kalvoda J, Melichar R (1999) Paleozoic sediments of the Drahany Upland. Geolines 8:88–90Google Scholar
  110. Kalvoda J, Babek O, Malovana A (1999) Sedimentary and Biofacies Record in Calciturbidites at the Devonian-Carboniferous Boundary in Moravia (Moravian-Silesian Zone, Middle Europe). Facies 41:141–157Google Scholar
  111. Kalvoda J, Melichar R, Babek O, Leichmann J (2002) Late Proterozoic-Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian Terrane and comparision with other terranes at the SE margins of Baltica-Laurussia. J Czech Geol Soc 47(3–4):32–41Google Scholar
  112. Kalvoda J, Leichmann J, Babek O, Melichar R (2003) Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geol Carpathica 54:139–152Google Scholar
  113. Kalvoda J, Otava J, Hladil J, Babek O (1995) New stratigraphic data from the Bouzov and West Drahany Upland Culm (In Czech). Geol vyzk Mor Slez 2:51–52Google Scholar
  114. Kettner R, (1966) Geologicka stavba Drahanske vrchoviny. Prace Odb Prir Ved Vlastived Ust Olomouc 8:1–23Google Scholar
  115. Kettner R, Remes M (1936) Auffindung von silurischen Schiefern mit einer Graptolithenfauna in Mähren. Zbl Mineral Geol Paläont Abt B1:21–26Google Scholar
  116. Klügel T, Ahrendt H, Oncken O, Käfer N, Schäfer F, Weiss B (1994) Alter und Herkunft der Sedimente und des Detritus der nördlichen Phyllit-Zone (Taunussüdrand). Z Deutsch Geol Ges 145:172–191Google Scholar
  117. Konopasek J, Schulmann K, Johan V (2002) Eclogite-facies metamorphism at the eastern margin of the Bohemian Massif- subduction prior to continental underthrusting? Eur J Miner 14(4):701–713Google Scholar
  118. Kossmat F (1927) Gliederung des variszischen Gebirgbaues. Sächs Geol Landesamt Abh 1:1–39Google Scholar
  119. Kotkova J, Gerdes A, Parrish RR (2003) Rapid exhumation and cooling of the thickened crust evidence from the granulite clasts within the Upper Visean conglomerates, Magmatic and Metamorphic Evolution of Central European Variscides, Blansko, Czech Republic, Excursion Guide, pp 67–77Google Scholar
  120. Kotkova J, Gerdes A, Parrish RR, Novak M (2007) Clasts of Variscan high-grade rocks within Upper Visean conglomerates: a missing link in the late Variscan evolution of Central Europe: constraints from U-Pb Chronology. J Metam Geol (in press)Google Scholar
  121. Kraft P, Marek J (1999) Silurian Graptolites and Cephalopods from Stinava (Drahany Upland, Moravia) (In Czech). Prir studie Muz Prostejovska 2:7–16Google Scholar
  122. Kröner A, Stipska P, Schulman K, Jaeckel P (2000) Chronological constraints on the Variscan evolution of the northeastern margin of the Bohemian massif, Czech Republic. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publications, vol 179, pp 175–197Google Scholar
  123. Krs M, Hladil J, Krsova M, Pruner P (1995) Paleomagneticky doklad pro variskou paleotektonickou rotaci moravskych devonskych hornin, Geol vyzk Mor Slez v r 2:53–57Google Scholar
  124. Kumpera O (1983) Lower Carboniferous geology of the Jeseniky Block (In Czech). Knih Ustr Ust Geol 59:1–174Google Scholar
  125. Kumpera O, Martinec P (1995) The development of the Carboniferous accretionary wedge in the Moravian-Silesian Paleozoic Basin. J Czech Geol Soc 40:47–60Google Scholar
  126. Langenstrassen F (1983) Neritic sedimentation of the lower and middle Devonian in the Rheinisches Schiefergebirge east of the river Rhine. In: Martin H, Eder FW (eds) Intracontinental fold belts. Springer, Berlin Heidelberg New York, pp 43–77Google Scholar
  127. Leichmann J (1996) Geologie und Petrologie des Brünner Massivs. PhD Thesis, Univ Salzburg, pp 1–118Google Scholar
  128. Lenhardt WA, Svancara J, Melichar R, Pazdirkova J, Havır J, Sykorova Z (2007) Seismic activity of the Alpine–Carpathian–Bohemian Massif region with regard to geological and potential field data. Geologica Carpathica, vol 58, p 4 (in press)Google Scholar
  129. Lobkowitz M, Schulmann K, Melka R (1998) Variscan deformation, microstructural zonation and extensional exhumation of the Cadomian Moravian basement. Geodin Acta 11(2–3):119–137Google Scholar
  130. Lütke F (1990) The Rhenish shelf sea-ocean-volcanic arc domain with special reference to the structural development of the Harz Mountains (abs). In: Terranes in the Circum-Atlantic Paleozoic orogens. International Conference on Paleozoic orogens in central Europe. Göttingen–Giessen, August–September 1990Google Scholar
  131. Macintyre RM, Bowes DR, Hamidullah S, Onstott TC (1993) K-Ar and Ar-Ar isotopic study of amphiboles from meta-ophiolite complexes, easterm Bohemian Massiff. In: Kukal Z (ed) Proceedings of the 1st International Conference on the Bohemian Massif. Prague, Czechoslovakia, September 28–October 3, 1998, pp 195–199Google Scholar
  132. Maly L (1993) Generation of the Boskovice Furrow Permo-Carboniferous Sedimentary basin and development of Upper Stephanian sedimentation in the Rosice–Oslavany coal basin (In Czech). In: Prichystal A, Obstová O, Suk M (eds) Geology of Moravia and Silesia. Fac Sci Masaryk University Brno, pp 87–99Google Scholar
  133. Mamet BL, Belford D (1968) Carboniferous foraminifera, Bonaparte Gulf Basin, North-Western Australia. Micropaleontology 14(3):339–347Google Scholar
  134. Masiak M, Podhalanska T, Stempien-Salek M (2003) Ordovician–Silurian boundary in the Bardo Syncline, Holy Cross Mountains, Poland: new data on fossil assemblages and sedimentary succession. Geol Q 47(4):311–330Google Scholar
  135. Mastalerz K, Nehyba S (1997) Comparison of Rotliegende lacustrine depositional sequences from the Intrasudetic, North-Sudetic and Boskovice basin (Central Europe). Geol Sudetica 30:21–57Google Scholar
  136. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan shearing. Tectonophysics 177(1–3):151–170Google Scholar
  137. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50(1):89–118Google Scholar
  138. McCann T (1999) Middle to Late Devonian basin evolution in the Rügen area, NE Germany. Geol Mijnb 78:57–71Google Scholar
  139. McKerrow S, Scotese CR, Brasier MD (1992) Early Cambrian continental reconstructions. J Geol Soc Lond 149:599–606Google Scholar
  140. Meisl S (1990) Metavolcanic Rocks in the “Northern Phyllite Zone” at the Southern Margin of the Rhenohercynian belt. Field Guide Mid-German Crystalline Rise and Rheinisches Schiefergebirge. International Conference on Paleozoic Orogens in Central Europe, Göttingen-Giessen, August–September 1990, pp 25–42Google Scholar
  141. Meisl S (1995) Chapter III.C.3: Igneous activity. In: Dallmeyer Rd, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 118–137Google Scholar
  142. Meissner R, Sadowiak P, Thomas SA (1994) East Avalonia, the third partner in the Caledonian collisions: evidence from deep seismic reflection data. Geol Rundsch 83:186–196Google Scholar
  143. Melichar R (1995) Tectonic significance of the Boskovice Furrow (In Czech). Geol vyzk Mor Slez 2:64–66Google Scholar
  144. Mikulas R, Nehyba S (2001) Trace fossils in rocks of the presumed Lower Cambrian age in the borehole Menín-1 in South Moravia (In Czech). Geol vyzk Mor Slez 8:47–50Google Scholar
  145. Mísar Z, Dudek A (1993) Some critical events in the geological history of eastern margin of the Bohemian Massif (In Czech). J Czech Geol Soc 38:9–21Google Scholar
  146. Misar Z, Jelinek E, Pacesova M (1984) The Letovice dismembered metaophiolites in the framework of the Saxo-Thuringian Zone of the Bohemian Massif. Mineralia Slov 16:13–28Google Scholar
  147. Moczydlowska M (1995a) Neoproterozoic and Cambrian successions deposited on the East European Platform and Cadomian basement area in Poland. Stud Geophys Geod 39:276–285Google Scholar
  148. Moczydlowska M (1995b) Cambrian microplankton distribution in Iberia and Baltica, and possible palaeogeographic relationships. In: Alonso MD, Gonzalo Corral JC (eds) XIII Reunion de Geologia del Oeste Peninsular, Annual IGCP Project 319–320 Meeting Salamanca, Communicaciones, pp 117–120Google Scholar
  149. Moczydlowska M (1997) Proterozoic and Cambrian successions in Upper Silesia: an Avalonian terrane in southern Poland. Geol Mag 134:679–689Google Scholar
  150. Moczydlowska M (1998) Cambrian acritarchs from Upper Silesia, Poland—biochronology and tectonic implications. Fossils Strata 46:1–121Google Scholar
  151. Narkiewicz M (2005) Devonian and Carboniferous carbonate complex in the southern part of the Upper Silesia block. Prace Panstwowego Inst Geol 182:1–46Google Scholar
  152. Nawrocki J, Zylinska A, Bula Z, Grabowski J, Krzywiec P, Poprawa P (2004a) Early Cambrian location and affinities of the Brunovistulian terrane (Central Europe) in the light of palaeomagnetic data. J Geol Soc Lond 161:513–522Google Scholar
  153. Nawrocki J, Boguckij A, Katinas V (2004b) New Late Vendian palaeogeography of Baltica and tle TESZ. Geol Q 48:309–316Google Scholar
  154. Nehyba S, Leichmann J, Kalvoda J (2001) Depositional environment of the „Old Red” sediments in the Brno area (South-eastern part of the Rhenohercynian zone, Bohemian massif). Geol Carpathica 52:195–203Google Scholar
  155. Neubauer F, Frisch W (1993) The Austro-Alpine metamorphic basement east of the Tauern window. In: Raumer J von, Neubauer F (eds) The Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 515–536Google Scholar
  156. Neubauer F, Handler R (2000) Variscan orogeny in the Eastern Alps and Bohemian Massif: How do these units correlate? In: Neubauer F, Höck V (eds) Aspects of Geology in Austria. Mitt Österr Geol Ges 92:35–59Google Scholar
  157. Okay AI, Tüzsüz O (1999) Tethyan sutures of nortehrn Turkey. In: Durand D, Jolivet L, Horvath F, Seranne M (eds) The Mediterranean Basin: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, vol 156, pp 475–515Google Scholar
  158. Oncken O, Weber K (1995) III.B.2 Structure. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 50–58Google Scholar
  159. Oncken O, Winterfeld C, Dittmar U (1999) Accretion of a rifted passive margin - the Late Paleozoic Rhenohercynian fold and thrust belt (Mid-European Variscides). Tectonics 18:75–91Google Scholar
  160. Orlowski S (1975) Lower Cambrian trilobites from Upper Silesia (Goczalkowice borehole). Acta Geol Pol 25:377–383Google Scholar
  161. Orlowski S (1985) Lower Cambrian and its trilobites in the Holy Cross Mts. Acta Geol Pol 35:231–250Google Scholar
  162. Otava J, Hladil J, Galle A (1994) The age of the Andelska Hora formation: new facts and their possible interpretation (In Czech). Geol vyzk Mor Slez 1:52–56Google Scholar
  163. Patocka F, Hladil J (1997) Indications of possible magmatic-arc/back-arc tectonic settings in the northern part of the Bohemian Massif during the Early Paleozoic. First International Conference on North Gondwana Mid-Palaeozoic northern Biodynamics (IGCP project 421), Vienna 17–21 September 1997, Abstracts, p 45Google Scholar
  164. Patocka F, Valenta J (1990) Geochemistry of metatrachytes and metarhyolites in the south of the Vrbno Devonian sequence, Horni Mesto area; tectonic subsidence originating from the metavolcanic protolith (In Czech). Cas Mineral Geol 35:41–64Google Scholar
  165. Patocka F, Valenta J (1996) Geochemistry of the Late Devonian intermediate to acid metavolcanic rocks from the southern part of the Vrbno Group, the Jeseniky Mts. (Moravo–Silesian Belt, Bohemian Massif, Czech Republic) Paleotecton Implic Geolines 4:42–54Google Scholar
  166. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discriminations diagrams for the tectonic interpretation of the granitic rocks. J Petrol 28:956–983Google Scholar
  167. Pharaoh TC (1999) Palaezoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41Google Scholar
  168. Platen K, Emmermann R, Franke W (1989) Devonian MORB type metabasalts from the Rhenohercynian zone in Germany. Terra Abs 1:365Google Scholar
  169. Popov V, Iosifidi A, Khramov A, Tait J, Bachtadse V (2002) Paleomagnetism of Upper Vendian sediments from theWinter Coast, White Sea region, Russia: implications for the paleogeography of Baltica during Neoproterozoic times. J Geophys Res 107(10):1–8Google Scholar
  170. Prichystal A (1990) Principal results of a study of tle Paleozoic volcanism in tle Sternberk-Horni Benesov Belt (Nizky Jesenik Mts.) (In Czech). Sbor Geol Ved Lozisk Geol Mineral 29:41–66Google Scholar
  171. Prichystal A (1993) Vulkanismus v geologické historii Moravy a Slezska od paleozoika do kvartéru. In: Prichystal A, Obstova V and Suk M (eds) Geologie Moravy a Slezska (Sbor. Prispev. 90. Výr. Naroz. prof. dr. K. Zapletala), pp 59–70Google Scholar
  172. Prichystal A (1994) New occurences of magmatic rocks in the Permian of the Boskovice Furrow (In Czech). Geol Vyzk Mor Slez 1:60–62Google Scholar
  173. Prichystal A (1999) K–Ar age determination of a basaltic dike from Zelesice (Brno massif) (In Czech). Geol Vyzk Mor Slez 6:120–121Google Scholar
  174. Rajlich P (1990) Strain and tectonic styles related to Variscan transpression and transtension in the Moravo–Silesian Culmian basin, Bohemian Massif, Czechoslovakia. Tectonophysics 174:351–367Google Scholar
  175. Raumer JF von, Neubauer F (1993) Late Precambrian and Palaeozoic evolution of the Alpine basement: an overview. In: Raumer JF von, Neubauer F (eds) The Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 625–640Google Scholar
  176. Riegler G (2000) Chemismen und Th–U–Pb Modellalter akzessorischer Monazite aus kristallinen Bohrkernen des Weinviertels und ihre Bedeutung für das Verständnis der geologischen Situation am Ostrand der Böhmischen Masse. Unpublished Master Thesis, Universität Salzburg, pp 1–72Google Scholar
  177. Scarrow JH, Pease V, Fleutelot C, Dushin V (2001) The late Neoproterozoic Enganepe ophiolite, Polar Urals, Russia: An extension of the Cadomian arc? Precambr Res 110:255–275Google Scholar
  178. Schäfer J, Neuroth H, Arendt H, Dörr W, Franke W (1997) Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch. Geol Rundsch 86(3):599–611Google Scholar
  179. Schneider D (2002) 40Ar/39Ar age of detrital white mica and sandstone chemistry of peripheral foreland basins: the Alpine Molasse and Variscan Moravo–Silesian basins. PhD Thesis, Univ Salzburg, pp 1–184Google Scholar
  180. Schulmann K, Gayer R (2000) A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. J Geol Soc Lond 157:401–416CrossRefGoogle Scholar
  181. Schulmann K, Kröner A, Hegner E, Wendt I, Konopasek J, Lexa O, Stipska P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448Google Scholar
  182. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowitz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92Google Scholar
  183. Schulmann K, Melka R, Lobkowitz M, Ledru P, Lardeaux JM, Autran A (1994) Contrasting styles of deformation during progressive nappe stacking at the southeastern margin of the Bohemian Massif (Thaya Dome). J Struct Geol 16:355–370Google Scholar
  184. Skacelová D, Weiss J (1978) A model of the development of the Brno Massif based on geophysical data (In Czech). Cas Mineral Geol 23:409–415Google Scholar
  185. Skocek V (1980) New information on the lithology of Devonian basal clastics in Moravia (In Czech). Vest Ustr Ust Geol 55:27–37Google Scholar
  186. Soucek J (1981) Geochemistry of Devonian metabasites of the Hruby and Nizky Jesenik Mts (In Czech). Cas Mineral Geol 26:125–142Google Scholar
  187. Spacek P, Kalvoda J (2000) Reconstruction of syn- and postsedimentary tectonic events in flysch basin from limestone pebbles variation: Drahany Culm of the Moravian Rhenohercynian Zone. Geol Carpathica 51:37–48Google Scholar
  188. Stipska P, Schulmann K (1995) Inverted metamorphic zonation in a basement-derived nappe sequence, eastern margin of the Bohemian Massif. Geol J 30:385–413Google Scholar
  189. Stibane FR, Dörr W, Michel H (1984) Zur stratigraphischen Stellung der Giessener Grauwacke (Rheinische Schiefergebirge). N Jb Geol Paläont Mh 3:173–178Google Scholar
  190. Stranik Z, Dvorak J, Krejci O, Müller P, Prichystal A, Suk M, Tomek C (1993) The contact of the North European Epivariscan Platform with the West Carpathians. J Czech Geol Soc 38:21–31Google Scholar
  191. Suess FE (1903): Bau und Bild der Bömischen Masse. In: Diener C, Hoernes R, Suess FE, Uhlig V (eds) Bau und Bild Österreichs. Tempsky-Freytag, Wien, pp 1–322Google Scholar
  192. Suess FE (1912) Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenke. Denkschriften der öster Akad der Wiss Math Nat 88:541–631Google Scholar
  193. Tait JA, Bachtadse V, Soffel H (1996) Eastern Variscan fold belt; paleomagnetic evidence for oroclinal bending. Geology 24:871–874Google Scholar
  194. Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan Foldbelt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598Google Scholar
  195. Tajcmanova L, Konopasek J, Schulmann K (2006) Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of Central Europe. J Metam Geol 24(2):119–134Google Scholar
  196. Torsvik TH, Rehnström EF (2001) Cambrian palaeomagnetic data from Baltica: Implications for true polar wander and Cambrian palaeogeography: J Geol Soc Lond 158:321–329Google Scholar
  197. van Breemen O, Aftalion M, Bowes DR, Dudek A, Misar Z, Povondra P, Vrana S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 75:89–108Google Scholar
  198. Vavrdova M (2006) Two benthic microbial assemblages from the Menin-1 borehole (Early Cambrian, Czech Republic). Bull Geosci 81(2):115–122Google Scholar
  199. Vavrdova M, Mikulas R, Nehyba S (2003) Lower Cambrian siliciclastic sediments in southern Moravia (Czech Republic) and their paleogeographical constraints. Geol Carpathica 54:67–79Google Scholar
  200. Winchester JA, Pharaoh TC, Verniers J (2002) Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications, vol 201, pp 1–18Google Scholar
  201. Zachovalova K (2003) Pebbles of magmatic rocks in Lower Carboniferous conglomerates: indicators of geotectonic setting (In Czech). PhD thesis, Masaryk Univ Brno, pp 1–148Google Scholar
  202. Zapletal J, Dvorak J, Kumpera O (1989) Stratigraphic classification of the Nizky Jesenik Culm (In Czech). Vest Ustr Ust Geol 64:243–250Google Scholar
  203. Zelazniewicz A, Bula Z, Jachowicz M, Zaba J (1997) Crystalline basement SW of the Trans-European Suture Zone in Poland: Neoproterozoic Cadomian orogen. Terra Nostra 11:167–171Google Scholar
  204. Zelazniewicz A, Seghedi A, Jachowicz M, Bobinski W, Bula Z, Cwojdzinski S (2001): U-Pb SHRIMP data confirm the presence of Vendian foreland flysch basin next to the East European Craton. Joint meeting of EUROPROBE, TESZ, TIMPEBAR, URALIDES & SW Iberia Projects, Ankara 30 September–2 October, 2001. Abstracts, vol 98–100. AnkaraGoogle Scholar
  205. Zukalova V (1976) Biostratigraphy of the Paleozoic in the basement and foreland of the Carpathians east of Brno (In Czech). Cas Mineral Geol 21:369–385Google Scholar
  206. Zukalova V, Chlupac I (1982) Stratigraphic classification of non-metamorphic Devonian of the Moravo–Silesian region (In Czech). Cas Mineral Geol 9:225–247Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Kalvoda
    • 1
  • O. Babek
    • 1
    • 2
  • O. Fatka
    • 3
  • J. Leichmann
    • 1
  • R. Melichar
    • 1
  • S. Nehyba
    • 1
  • P. Spacek
    • 4
  1. 1.Institute of Geological SciencesMasaryk UniversityBrnoCzech Republic
  2. 2.Department of GeologyPalacky UniversityOlomoucCzech Republic
  3. 3.Institute of Geology and PaleontologyCharles UniversityPrague 2Czech Republic
  4. 4.Institute of Physics of the EarthMasaryk UniversityBrnoCzech Republic

Personalised recommendations