Advertisement

International Journal of Earth Sciences

, Volume 97, Issue 1, pp 115–134 | Cite as

Integrated stratigraphy and 40Ar/39Ar chronology of the Early to Middle Miocene Upper Freshwater Molasse in eastern Bavaria (Germany)

  • H. Abdul AzizEmail author
  • M. Böhme
  • A. Rocholl
  • A. Zwing
  • J. Prieto
  • J. R. Wijbrans
  • K. Heissig
  • V. Bachtadse
Original Paper

Abstract

A detailed integrated stratigraphic study was carried out on middle Miocene fluvial successions of the Upper Freshwater Molasse (OSM) from the North Alpine Foreland Basin, in eastern Bavaria, Germany. The biostratigraphic investigations yielded six new localities thereby refining the OSM biostratigraphy for units C to E (sensu; Heissig, Actes du Congres BiochroM’97. Mem Trav EPHE, Inst Montpellier 21, 1997) and further improving biostratigraphic correlations between the different sections throughout eastern Bavaria. Radioisotopic ages of 14.55 ± 0.19 and 14.88 ± 0.11 Ma have been obtained for glass shards from the main bentonite horizon and the Ries impactite: two important stratigraphic marker beds used for confirming our magnetostratigraphic calibration to the Astronomical Tuned Neogene Time Scale (ATNTS04; Lourens et al. in Geologic Time Scale 2004, Cambridge University Press, 2004). Paleomagnetic analysis was performed using alternating field (AF) and thermal (TH) demagnetization methods. The AF method revealed both normal and reverse polarities but proofs to yield unreliable ChRM directions for the Puttenhausen section. Using the biostratigraphic information and radioisotopic ages, the magnetostratigraphic records of the different sections are tentatively correlated to the Astronomical Tuned Neogene Time Scale (ATNTS04; Lourens et al. in Geologic Time Scale 2004, Cambridge University Press, 2004). This correlation implies that the main bentonite horizon coincides to chron C5ADn, which is corroborated by its radioisotopic age of 14.55 Ma, whereas the new fossil locality Furth 460, belonging to OSM unit E, probably correlates to chron C5Bn.1r. The latter correlation agrees well with the Swiss Molasse locality Frohberg. Correlations of the older sections are not straightforward. The Brock horizon, which comprises limestone ejecta from the Ries impact, possibly correlates to C5ADr (14.581–14.784 Ma), implying that, although within error, the radioisotopic age of 14.88 ± 0.11 Ma is somewhat too old. The fossil localities in Puttenhausen, belonging to the older part of OSM unit C, probably coincide with chron C5Cn.2n or older, which is older than the correlations established for the Swiss Molasse.

Keywords

Biostratigraphy Magnetostratigraphy 40Ar/39Ar dating Middle Miocene Molasse 

Notes

Acknowledgments

We thank Daniel Kälin and Johann Hohenegger for critically reviewing the manuscript. Georg Bauer (Ziegelwerke Leipfinger-Bader, Puttenhausen), Franz Luderfinger (Isarkies GmBH, Unterwattenbach) and Helmut Eichstetter (Eichstetter GmBH, Furth) are thanked for working permissions and technical help in the gravel and clay pits. Albert Ulbig is thanked for providing the glass samples from Hachelstuhl. This project was supported by DFG grant BO 1550/7–1.

Supplementary material

531_2006_166_MOESM1_ESM.eps (1.5 mb)
ESM1 (EPS 1.51 MB)

References

  1. Bachmann GH, Müller M (1991) The Molasse Basin, Germany: evolution of a classic petroliferous foreland basin. In: Spencer AM (ed) Generation, accumulation, and production of Europe’s hydrocarbons. Special publication of the European association of petroleum geoscientists. Eur Assoc Pet Geosci Spec Publ 1. Oxford University Press, Oxford, pp 263–276Google Scholar
  2. Batsche H (1957) Geologische Untersuchungen in der Oberen Süßwassermolasse Ostniederbayerns (Blatt Landau, Eichendorf, Simbach, Arnstorf der Topogr. Karte 1:25,000). Beihefte zum Geologischen Jahrbuch 26:261–307Google Scholar
  3. Birzer F (1969) Molasse und Ries-Schutt im westlichen Teil der südlichen Frankenalb. Geologische Blätter für Nordost-Bayern 19:1–28Google Scholar
  4. Böhme M (1999) Die miozäne Fossil-Lagerstätte Sandelzhausen. 16. Fisch- und Herpetofauna-Erste Ergebnisse. Neues Jahrb Palaontol Geol Abh 214(3):487–495Google Scholar
  5. Böhme M (2003) Miocene climatic optimum: evidence from lower vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195(3–4):389–401CrossRefGoogle Scholar
  6. Böhme M, Gregor H-J, Heissig K (2002) The Ries- and Steinheim meteorite impacts and their effect on environmental conditions in time and space. In: Buffetaut E, Koerbel C (eds) Geological and biological effects of impact events. Springer, Berlin, pp 215–235Google Scholar
  7. Bolliger T (1992) Kleinsäuger aus der Miozänmolasse der Ostschweiz. Doc nat 75:296Google Scholar
  8. Bolliger T (1997) The current knowledge of the biozonation with small mammals in the upper fresh water molasse in Switzerland, especially the Hörnli-Fan. In: Aguilar JP, Legendre S, Michaux J (eds) Actes du Congres BiochroM’97. Mem Trav EPHE, Inst Montpellier 21, pp 537–546Google Scholar
  9. Boon E (1991) Die Cricetiden und Sciuriden der Oberen Süßwasser-Molasse von Bayerisch-Schwaben und ihre stratigraphische Bedeutung. Ph.D. thesis, Ludwig-Maximillians-University Munich, p 159Google Scholar
  10. Buchner E, Seyfried H, van den Bogaard P (2003) 40Ar/39Ar laser probe age determination confirms the Ries impact crater as the source of glass particles in Grupensand sediments (Grimmelfingen formation, North Alpine Foreland Basin). Int J Earth Sci 92:1–6Google Scholar
  11. Dehm R (1955) Die Säugetierfaunen der Oberen Süßwassermolasse und ihre Bedeutung für die Gliederung. Erläuterungen zur Geologischen Übersichtskarte der Süddeutschen Molasse. Bayerisches Geologisches Landesamt, Munich, pp 81–87Google Scholar
  12. Doppler G, Pürner T, Seidel M (2000) Zur Gliederung und Kartierung der bayerischen Vorlandmolasse. Geol Bavarica 105:219–243Google Scholar
  13. Fahlbusch V (1964) Die Cricetiden (Mamm.) der Oberen Süßwassermolasse. Bayer Akad Wiss Math Naturwiss Kl Abh (NF) 118:136Google Scholar
  14. Fahlbusch V (2003) Die miozäne Fossil-Lagerstätte Sandelzhausen—Die Ausgrabungen 1994–2001. Zitteliana A 43:109–122Google Scholar
  15. Fahlbusch V, Wu W (1981) Puttenhausen: Eine neue Kleinsäuger-Fauna aus der oberen Süßwasser-Molasse Niederbayerns. Mitt Bayer Staatssammlung für Paläont historische Geol 21:115–119Google Scholar
  16. Fahlbusch V, Gall H, Schmidt-Kittler N (1972) Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 2. Sediment und Fossilgehalt. N Jb Geol Paläont Mh 1972(6):331–343Google Scholar
  17. Fiest W (1989) Lithostratigraphie und Schwermineralgehalt der Mittleren und Jüngeren Serie der Oberen Süßwassermolasse Bayerns im Übergangsbereich zwischen Ost- und Westmolasse. Geol Bavarica 94:259–279Google Scholar
  18. Graup G, Horn P, Köhler H, Müller-Sohnius D (1981) Source materials for moldavites and bentonites. Naturwissenschaften 68:616–617CrossRefGoogle Scholar
  19. Gregor J (1969) Geologische Untersuchungen im Südost-Viertel des Blattes Mainburg 7336 (Niederbayern). Graduate thesis, Ludwig-Maximilians-University Munich, p 59Google Scholar
  20. Heissig K (1989) Neue Ergebnisse zur Statigraphie der Mittleren Serie der Oberen Süßwassermolasse Bayerns. Geol Bavarica 94:239–258Google Scholar
  21. Heissig K (1990) The faunal succession of the Bavarian Molasse reconsidered—correlation of the MN5 and MN6 faunas. In: Lindsay EH, Fahlbusch V, Mein P (eds) European Mammal Chronology. Plenum, London, pp 181–192Google Scholar
  22. Heissig K (1997) Mammal faunas intermediate between the reference faunas of MN4 and MN6 from the Upper Freshwater Molasse of Bavaria. In: Aguilar JP, Legendre S, Michaux J (eds) Actes du Congres BiochroM’97. Mem Trav EPHE, Inst Montpellier 21, pp 537–546Google Scholar
  23. Herold R (1970) Sedimentpetrographische und mineralogische Untersuchungen an pelitischen Gesteinen der Molasse Niederbayerns. Ph.D. thesis, Ludwig-Maximilians-University, Munich, p 132Google Scholar
  24. Hofmann B (1973) Erläuterungen zur Geologische Karte von Bayern 1:25,000 Blatt Nr. 7439 Landshut Ost. Bayer Geol Landesamt, p 113Google Scholar
  25. Homewood P, Allen PA, Williams GD (1986) Dynamics of the Molasse Basin of western Switzerland. In: Allen PA, Homewood P (eds) Foreland basins. Spec Publ Int Ass Sediment 8:199–217Google Scholar
  26. Kälin D (1997) The mammal zonation of the Upper Marine Molasse of Switzerland reconsidered—a local biozonation of MN2–MN5. In: Aguilar JP, Legendre S, Michaux J (eds) Actes du Congres BiochroM’97. Mem Trav EPHE, Inst Montpellier 21, pp 515–535Google Scholar
  27. Kälin D, Kempf O (2002) High-resolution mammal biostratigraphy in the Middle Miocene continental record of Switzerland (Upper Freshwater Molasse, MN4–MN9, 17–10 Ma). Abstract EEDEN—meeting, November 2002, FrankfurtGoogle Scholar
  28. Kempf O, Bolliger T, Kälin D, Engesser B, Matter A (1997) New magnetostratigraphic calibration of Early to Middle Miocene mammal biozones of the North Alpine foreland basin. In: Aguilar J-P, Legendre S, Michaux J (eds) Actes du Congrès BiochroM’97. Mém Trav EPHE Inst Montpellier 21:547–561Google Scholar
  29. Kempf O, Matter A, Burbank W, Mange M (1999) Depositional and structural evolution of a foreland basin margin in a magnetostratigraphic framework: the eastern Swiss Molasse Basin. Int J Earth Sci 88:253–275CrossRefGoogle Scholar
  30. Kirschvink JL (1980) The least square line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62:699–718Google Scholar
  31. Koppers AAP (2002) ArArCalc-software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619CrossRefGoogle Scholar
  32. Kuhlemann J, Kempf O (2002) Post-eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment Geol 152:45–78CrossRefGoogle Scholar
  33. Kuhlemann J, Frisch W, Székely B, Dunkl I, Kázmér M (2002) Post-collisional sediment budget history of the Alps: tectonic versus climatic control. Int J Earth Sci 91:818–837CrossRefGoogle Scholar
  34. Kuiper KF, Hilgen FJ, Steenbrink J, Wijbrans JR (2004) 40Ar/39Ar ages of tephras intercalated in astronomically tuned Neogene sedimentary sequences in the eastern Mediterranean. Earth Planet Sci Lett 222:583–597CrossRefGoogle Scholar
  35. Laurenzi MA, Bigazzi G, Balestrieri ML, Bou-Ka V (2003) 40Ar/39Ar laser probe dating of the Central European tektite-producing impact event. Meteorit Planet Sci 38:887–893CrossRefGoogle Scholar
  36. Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene Period. In: Gradstein FM, Ogg JG, Smith AG (eds) Geologic Time Scale 2004. Cambridge University Press, pp 409–440Google Scholar
  37. Petersen N, Soffel HC, Pohl J, Helbig K (1965) Rock-magnetic research at the Institut für Angewandte Geophysik, Universität München. J Geomag Geoelect 17:363–372Google Scholar
  38. Pohl J (1965) Über die Magnetisierung der Suevite im Nördlinger Ries, Diploma thesis. University of Munich, MunichGoogle Scholar
  39. Reichenbacher B, Böttcher R, Bracher H, Doppler G, von Engelhardt W, Gregor H-J, Heissig K, Heizmann EPJ, Hofmann F, Kälin D, Lemke K, Luterbacher H, Martini E, Pfeil F, Reiff W, Schreiner A, Steininger FF (1998) Graupensandrinne-Ries-Impakt: Zur Stratigraphie der Grimmelfinger Schichten, Kirchberger Schichten und Oberen Süßwassermolasse. Z Dt Geol Ges 149:127–161Google Scholar
  40. Reichenbacher B, Kälin D, Jost J (2005) A fourth St Galen cycle (?) in the Karpatian Upper Marine Molasse of Central Switzerland. Facies 51:160–172CrossRefGoogle Scholar
  41. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  42. Rögl F, Spezzaferri S, Coric S (2002) Micropaleontology and biostratigraphy of the Karpatian–Badenian transition (Early–Middle Miocene boundary) in Austria (Central Paratethys). Cour Forsch-Inst Senckenb 237:47–67Google Scholar
  43. Rögl F, Coric S, Hohenegger J, Pervesler P, Roetzel R, Scholger R, Spezzaferri S, Stingl K (2006) The Styrian tectonic phase—a series of events at the Early/Middle Miocene boundary revised and stratified in the Styrian Basin. Geophys Res Abs 8:10733Google Scholar
  44. Schlunegger F, Burbank DW, Matter A, Engesser B, Mödden C (1996) Magnetostratigraphic calibration of the Oligocene to Middle Miocene (30–15 Ma) mammal biozones and depositional sequences of the Swiss Molasse Basin. Eclogae Geol Helv 89:753–788Google Scholar
  45. Schlunegger F, Jordan TE, Klaper EM (1997) Controls of erosional denudation in the orogen on foreland basin evolution: the Oligocene central Swiss Molasse Basin as an example. Tectonics 16:823–840CrossRefGoogle Scholar
  46. Schlunegger F, Melzer J, Tucker GE (2002) Climate, exposed source rock lithologies, crustal uplift and surface erosion: a theoretical analysis calibrated with data from the Alps/North Alpine Foreland Basin system. Int J Earth Sci 90:484–499Google Scholar
  47. Schmid W (2002) Ablagerungsmilieu, Verwitterung und Paläoböden feinklastischer Sedimente der Oberen Süßwassermolasse Bayerns. Bayer Akad Wiss Math Naturwiss Kl Abh (NF) 172:1–247Google Scholar
  48. Scholz H (1986) Beitrage zur Sedimentologie und Paläontologie der Oberen Süßwassermolasse im Allgäu. Jb Geol B-A 129:99–127Google Scholar
  49. Schötz M (1988) Die Erinaceiden (Mammalia, Insectivora) aus Niederaichbach und Maßendorf (Obere Süßwassermolasse Niederbayerns). Mitt Bayer Staatssammlung für Paläont historische Geol 28:65–87Google Scholar
  50. Schötz M (1993) Zwei Hamsterfaunen (Rodentia, Mammalia) aus der Niederbayerischen Molasse. Mitt Bayer Staatssammlung für Paläont historische Geol 33:155–194Google Scholar
  51. Schwarz WH, Lippolt HJ (2002) Coeval 40Ar/39Ar ages of moldavites from Bohemian and Lusatian strewn fields. Meteorit Planet Sci 37:1757–1763Google Scholar
  52. Steiger RH, Jäger E (1977) Subcommission on geochemistry: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  53. Stille H (1924) Grundfragen vergleichender Tektonik. Berlin (Borntraeger), pp 1–443Google Scholar
  54. Storzer D, Gentner W (1970) Spaltspuren-Alter von Riesgläsern, Moldaviten und Bentoniten. Jber u Mitt Oberrh Geol Ver NF 52:97–111Google Scholar
  55. Storzer D, Jessberger EK, Kunz J, Lange J-M (1995) Synopsis von Spaltspuren- und Kalium-Argon-Datierungen an Ries-Impaktgläsern und Moldaviten. Abstract, 4th Annu Meet Ges für Geowissenschaften 195:79–80Google Scholar
  56. Ulbig A (1994) Vergleichende Untersuchungen an Bentoniten, Tuffen und sandig-tonigen Einschaltungen in den Bentonitlagerstätten der Oberen Süßwassermolasse Bayerns. Dissertation, Technical University Munich, MunichGoogle Scholar
  57. Ulbig A (1999) Investigations on the origin of the bentonite deposits in the Bavarian Upper Freshwater Molasse. Neues Jahrb Geol Palaontol Abh 214:497–508Google Scholar
  58. Unger HJ, Fiest W, Niemeyer A (1990) Die Bentonite der ostbayerischen Molasse und ihre Beziehungen zu den Vulkaniten des Pannonischen Beckens. Geol Jb D96:67–112Google Scholar
  59. Wu W (1982) Die Cricetiden (Mamalia, Rodentia) aus der Oberen Süßwasser-Molasse von Puttenhausen (Niederbayern). Zitteliana 9:37–80Google Scholar
  60. Wu W (1990) Die Gliriden (Mammalia, Rodentia) aus der Oberen Süßwasser-Molasse von Puttenhausen (Niederbayern). Mitt Bayer Staatssammlung Paläont historische Geol 30:65–105Google Scholar
  61. Wurm A (1937) Beiträge zur Kenntnis der nordalpinen Saumtiefe zwischen unterem Inn und unterer Isar. Neues Jahrb Mineral Beil-Bd 78B:285–326Google Scholar
  62. Ziegler R (2000) The Miocene Fossil-Lagerstätte Sandelzhausen, 17. Marsupialia Lipotyphla Chiroptera Senckenbergiana lethaea 80(1):81–127Google Scholar
  63. Ziegler R (2005) The squirrels (Sciuridae, Mammalia) of the Miocene Fossil-Lagerstätte Sandelzhausen (Bavaria, Southern Germany).Neues Jahrb Geol Palaontol Abh 237(2):273–312Google Scholar
  64. Ziegler R, Fahlbusch V (1986) Kleinsäuger-Faunen aus der basalen Oberen Süßwassermolasse Niederbayerns. Zitteliana 14:3–80Google Scholar
  65. Zijderveld JDA (1967) AC demagnetization of rocks: analysis of results. In: Collinson et al (eds) Methods in Paleomagnetizm. Elsevier, Amsterdam, pp 254–286Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H. Abdul Aziz
    • 1
    Email author
  • M. Böhme
    • 2
  • A. Rocholl
    • 3
  • A. Zwing
    • 6
  • J. Prieto
    • 2
  • J. R. Wijbrans
    • 5
  • K. Heissig
    • 4
  • V. Bachtadse
    • 1
  1. 1.Department for Earth and Environmental Sciences, Section GeophysicsLudwig-Maximilians-University MunichMunichGermany
  2. 2.Department for Earth and Environmental Sciences, Section PalaeontologyLudwig-Maximilians-University MunichMunichGermany
  3. 3.Department for Earth and Environmental Sciences, Section MineralogyLudwig-Maximilians-Universität MünchenMunichGermany
  4. 4.Bavarian State Collection for Palaeontology and Geology MunichMunichGermany
  5. 5.Department of Isotope GeochemistryVrije Universiteit Amsterdam1081 HV AmsterdamThe Netherlands
  6. 6.Ludwig-Maximilians-University MunichMunichGermany

Personalised recommendations