International Journal of Earth Sciences

, Volume 97, Issue 1, pp 71–88 | Cite as

Provenance of late Palaeozoic metasediments of the Patagonian proto-Pacific margin (southernmost Chile and Argentina)

  • Carita AugustssonEmail author
  • Heinrich Bahlburg
Original Paper


In this provenance study of late Palaeozoic metasediments of the Eastern Andean Metamorphic Complex (EAMC) along the south Patagonian proto-Pacific margin of Gondwana, the palaeogeological setting of the continental margin in Devonian–Carboniferous and Permian times is reconstructed. The study is based on detrital heavy mineral contents, chemical compositions of tourmaline grains, and whole rock element and Nd-Sr isotopic compositions. Element and isotopic compositions reveal that Devonian–Carboniferous metaturbidites deposited before the development of a Late Carboniferous–Permian magmatic arc along the margin were mainly fed from felsic, recycled, old continental rocks. The last recycling phase involved erosion of metasediments that were exposed in Patagonia. Feeder systems to the basin cut either through epidote-rich or garnet-rich metasediments. In Permian time, EAMC metaturbidites were deposited next to the evolving magmatic arc and were derived from felsic, crustal rocks. Two provenance domains are recognised. The metasediments of the northern one are chemically similar to those of the Devonian–Carboniferous metasediments. This domain was fed from the metasedimentary host rocks of the magmatic arc. The southern domain probably was fed from the arc proper, as indicated mainly by the dominance of metaplutonic lithic fragments, abundant detrital biotite, and the major element composition of the metasediments.


Provenance Geochemistry Heavy minerals Palaeozoic Patagonia 



This work was supported by the Deutsche Forschungsgemeinschaft (DFG; grants Ba 1011/17-1, -2 and -3). Juan-Pablo Lacassie and Nicole Dobrzinski are acknowledged for rock samples. Mukul Bhatia, Keith Crook, Hilmar von Eynatten and Arne Willner are thanked for valuable comments on earlier versions of the paper and Ralph O Howard Jr is acknowledged for checking the English grammar.


  1. Albarède F, Brouxel M. (1987) The Sm/Nd secular evolution of the continental crust and the depleted mantle. Earth Planet Sci Lett 82:25–35CrossRefGoogle Scholar
  2. Augustsson C, Bahlburg H (2003a) Active or passive margin? Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-Andean accretionary wedge in southernmost Chile (46°30′-48°30′S). In: McCann T, Saintot A (eds). Tracing tectonic deformation using the sedimentary record, vol 208. Geological Society, Special Publication, London, pp 253–268Google Scholar
  3. Augustsson C, Bahlburg H (2003b) Cathodoluminescence spectra of detrital quartz as provenance indicators for Paleozoic metasediments in southern Andean Patagonia. J S Am Earth Sci 16:15–26CrossRefGoogle Scholar
  4. Augustsson C, Münker C, Bahlburg H, Fanning CM (2006) Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. J Geol Soc Lond 163:983–995CrossRefGoogle Scholar
  5. Bahlburg H, Hervé F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geol Soc Am Bull 109:869–884CrossRefGoogle Scholar
  6. Bell CM, Suárez M (2000) The Río Lácteo Formation of Southern Chile. Late Paleozoic orogeny in the Andes of southernmost South America. J S Am Earth Sci 13:133–145CrossRefGoogle Scholar
  7. Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193CrossRefGoogle Scholar
  8. Burke WH, Denison RE, Heatherington EA, Koepnik RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  9. Condie KC, Dengate J, Cullers RL (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front range, Colorado, USA. Geochim Cosmochim Acta 59:279–294CrossRefGoogle Scholar
  10. Cox R, Lowe DR (1996) Quantification of the effects of secondary matrix on the analysis of sandstone composition, and a petrographic-chemical technique for retrieving original framework grain modes of altered sandstones. J Sed Res 66:548–558Google Scholar
  11. Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235CrossRefGoogle Scholar
  12. Dobrzinski N (2001) Petrographie und Geochemie der paläozoischen Sedimente in S-Chile zwischen dem 48° und 51°S. Diploma Thesis, Westfäliche Wilhelms-Universität Muenster, pp 1–58Google Scholar
  13. Douglass RC, Nestell MK (1976) Late Paleozoic foraminafera from southern Chile. US Geol Surv Prof Pap 858:1–47Google Scholar
  14. Escobar F (ed) (1980) Mapa Geológico de Chile. Servicio Nacional de Geología y Minería, 1:1 000 000Google Scholar
  15. Fang Z, Boucot A, Covacevich V, Hervé F, (1998) Discovery of Late Triassic fossils in the Chonos Metamorphic Complex, Southern Chile. Revista Geológica de Chile 25:165–174Google Scholar
  16. Faúndez V, Hervé F, Lacassie JP (2002) Provenance and depositional setting of pre-Late Jurassic turbidite complexes in Patagonia, Chile. NZ J Geol Geophys 45:411–425Google Scholar
  17. Forsythe R (1982) The late Palaeozoic to early Mesozoic evolution of southern South America: a plate tectonic interpretation. J Geol Soc London 139:671–682Google Scholar
  18. Fortey R, Pankhurst RJ, Hervé F (1992) Devonian Trilobites at Buill, Chiloé (42°S). Revista Geológica de Chile 19:133–143Google Scholar
  19. Galloway WE (1974) Deposition and diagenetic alteration of sandstone in northeast Pacific arc-related basins: implications for graywacke genesis. Geol Soc Am Bull 85:379–390CrossRefGoogle Scholar
  20. Goldstein SL, O′Nions RK, Hamilton PJ (1984) A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236CrossRefGoogle Scholar
  21. Hallsworth CR, Morton AC, Claoué-Long J, Fanning CM (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sed Geol 137:147–185CrossRefGoogle Scholar
  22. Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Miner 70:1–15Google Scholar
  23. Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Miner Petrol 112:203–218CrossRefGoogle Scholar
  24. Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anovitz LM (eds). Boron—mineralogy, petrology and geochemistry. Rev Miner 33:503–558Google Scholar
  25. Hervé F, Demant A, Ramos VA, Pankhurst RJ, Suárez M (2000) The southern Andes. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds). Tectonic evolution of South America. 31st International Geological Congress, pp 605–634Google Scholar
  26. Hervé F, Fanning CM, Pankhurst RJ (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J S Am Earth Sci 16:107–123CrossRefGoogle Scholar
  27. Lagally U (1975) Geologische Untersuchungen im Gebiet Lago General Carrera - Lago Cochrane, Prov. Aisén/Chile unter besonderer Berücksichtigung des Grundgebirges und seiner Tektonik. Dissertation, Ludwig-Maximilians-Universität, München, pp 1–131Google Scholar
  28. Leanza AF (1972) Andes patagónicos australes. In: Leanza AF (ed) Geología regional argentina. Academia Nacional de Ciencias, Córdoba, pp 689–706Google Scholar
  29. Ling HY, Forsythe RD (1987) Late Paleozoic pseudoalbaillellid radiolarians from southernmost Chile and their geological significance. In: McKenzie DG (ed) Gondwana Six: structure, tectonics and geophysics. Geophysical Monograph 40:253–260Google Scholar
  30. Ling HY, Forsythe RD, Douglas RC (1985) Late Paleozoic microfaunas from southernmost Chile and their relation to Gondwanaland forearc development. Geology 13:357–360CrossRefGoogle Scholar
  31. McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Miner 21:169–200Google Scholar
  32. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, geophysics, geosystems (G3) 2, pp 1–24. DOI
  33. McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050CrossRefGoogle Scholar
  34. Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett JK, Zuffa GG (eds). Marine clastic sedimentology. Graham & Trotman, London, pp 1–38Google Scholar
  35. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  36. O’Nions RK, Hamilton PJ, Evensen NM (1977) Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet Sci Lett 34:13–22CrossRefGoogle Scholar
  37. Potter PE (1994) Modern sands of South America: composition, provenance and global significance. Geol Rundsch 83:212–232CrossRefGoogle Scholar
  38. Ramírez-Sánchez E, Hervé F, Kelm U, Sassi R (2005) P-T conditions of metapelites from metamorphic complexes in Aysen. J S Am Earth Sci 19:373–386CrossRefGoogle Scholar
  39. Ramos VA (1989) Andean foothills structures in northern Magellanes Basin, Argentina. Am Assoc Pet Geol Bull 73:887–903Google Scholar
  40. Riccardi AC (1971) Estratigrafía en el oriente de la Bahía de la Lancha, Lago San Martín, Santa Cruz, Argentina. Revista del Museo de La Plata (nueva serie), Sección Geología 7:245–318Google Scholar
  41. Roser BP, Korsch RJ (1988) Provenance signatures of sandstone—mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139CrossRefGoogle Scholar
  42. Shaw HF, Wasserburg GJ (1982) Age and provenance of the target materials for tectites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics. Earth Planet Sci Lett 60:155–177CrossRefGoogle Scholar
  43. Sircombe KN (1999) Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sed Geol 124:47–67CrossRefGoogle Scholar
  44. Steiger RH, Jäger E (1977) Submission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  45. Stille P, Shields G (1997) Radiogenic isotope geochemistry of sedimentary and aquatic systems. Lecture Notes Earth Sci 68:1–271CrossRefGoogle Scholar
  46. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, pp 1–312Google Scholar
  47. Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42–52°S). Revista Geológica de Chile 29:255–271Google Scholar
  48. von Eynatten H, Wijbrans JR (2003) Precise tracing of exhumation and provenance using 40Ar/39Ar geochronology of detrital white mica: the example of the Central Alps. In: McCann T, Saintot A (eds). Tracing tectonic deformation using the sedimentary record, vol. 208. Geological Society, Special Publication, London, pp 289–305Google Scholar
  49. Whitmore GP, Crook KAW, Johnson DP (2004) Grain size control of mineralogy and geochemistry in modern river sediments, New Guinea collision, Papua New Guinea. Sed Geol 171:129–157CrossRefGoogle Scholar
  50. Willner AP (1987) Detrital tourmalines as indicators for the source rocks of Late Precambrian–Lower Cambrian greywackes (Puncoviscana Formation) in NW Argentina. Zbl Geol Paläont Teil I 1987:885–891Google Scholar
  51. Willner AP, Hervé F, Massonne H-J (2000) Mineral chemistry and pressure-temperature evolution of two contrasting high-pressure - low-temperature belts in the Chonos Archipelago, southern Chile. J Petrol 41:309–330CrossRefGoogle Scholar
  52. Willner AP, Ermolaeva T, Stroink L, Glasmacher UA, Giese U, Puchkov VN, Kozlov VI, Walter R (2001) Contrasting provenance signals in Riphean and Vendian sandstones in the SW Urals (Russia): constraints for a change from passive to active continental margin conditions in the Neoproterozoic. Precamb Res 110:215–239CrossRefGoogle Scholar
  53. Willner AP, Hervé F, Thomson SN, Massonne H-J (2004) Converging P-T paths of Mesozoic HP-LT metamorphic units (Diego de Almagro Island, Southern Chile): evidence for juxtaposition during late shortening of an active continental margin. Miner Petrol 81:43–84CrossRefGoogle Scholar
  54. Willner AP, Thomson SN, Kröner A, Wartho J-A, Wijbrans JR, Hervé F (2005) Time markers for the evolution and exhumation history of a Late Palaeozoic paired metamorphic belt in north-central Chile (34°-35°30′S). J Petrol 46:1835–1858CrossRefGoogle Scholar
  55. Yoshida K (1981) Estudio geológico del curso superior del río Baker, Aysén, Chile (47°05′ a 47°42′ Lat. S., 72°28′ a 73°15′ Long. W.). Dissertation, Universidad de Chile, Santiago, pp 1–341Google Scholar
  56. Zack T, von Eynatten H, Kronz A (2004) Rutile geochemistry and its potential use in quantitative provenance studies. Sed Geol 171:37–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Geologisch-Paläontologisches Institut, Westfälische Wilhelms-UniversitätMuensterGermany
  2. 2.Zentrallaboratorium für Geochronologie, Mineralogisches InstitutWestfälische Wilhelms-UniversitätMuensterGermany

Personalised recommendations