International Journal of Earth Sciences

, Volume 96, Issue 5, pp 925–946 | Cite as

Reappraisal of early Paleogene CCD curves: foraminiferal assemblages and stable carbon isotopes across the carbonate facies of Perth Abyssal Plain

  • Haidi J. L. HancockEmail author
  • Gerald R. Dickens
  • Ellen Thomas
  • Kevin L. Blake
Original Paper


Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ∼30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (∼57–52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)—P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The δ13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene–lower Eocene (∼57–52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi δ13C of 0.5 and 1.0‰ characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ∼57 to 52–51 Ma, as also recognized at other locations.


Paleocene Eocene Carbonate Planktic Benthic Carbon cycle 



We thank Dick Olsson and Bill Berggren for their invaluable help with identifications of Eocene planktic foraminiferal species; Birger Schmitz and Jim Kennett for use of their laboratories for stable isotope analyses; and two anonymous referees whose comments improved this paper. This work was supported through a JCU graduate student fellowship to HJLH, and a US National Science Foundation Biocomplexity grant (EAR 0120727) to GRD and ET.


  1. Alegret L, Thomas E (2001) Upper Cretaceous and lower Paleogene benthic foraminifera from northeastern Mexico. Micropaleontology 47:269–316CrossRefGoogle Scholar
  2. Archer DE, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263CrossRefGoogle Scholar
  3. Aubry MP, Berggren W et al (2003) Chronostratigraphic terminology at the Paleocene/Eocene boundary. In: Wing SL, Gingerich PD, Schmitz B et al (eds) Causes and consequences of the globally warm climates in the early Paleogene. The Geological Society of America, Spec. Paper 369, pp 551–566Google Scholar
  4. Bains S, Corfield RM et al (1999) Mechanisms of climate warming at the end of the Paleocene. Science 285:724–727CrossRefGoogle Scholar
  5. Berger WH (1968) Planktonic foraminifera; selective solution and paleoclimatic interpretation. Deep-Sea Res Oceanograph Abstracts 15:31–43CrossRefGoogle Scholar
  6. Berger WH, Adelseck CG et al (1976) Distribution of carbonate in surface sediments of the Pacific Ocean. J Geophys Res 81:2617–2627CrossRefGoogle Scholar
  7. Berger WH, von Rad U (1972) Cretaceous and Cenozoic sediments from the Atlantic Ocean Init. Repts. DSDP, 14: Washington US Government Printing Office, pp 787–886Google Scholar
  8. Berggren WA, Kent DV et al (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry MP et al (eds) Geochronology, time scales and global stratigraphic correlation, SEPM Special Publication 54, pp 129–212Google Scholar
  9. Bode GW (1974) Carbon and carbonate analyses, Leg 27. In: Heirtzler JR, Veevers JJ, Bolli HM et al (eds) Init. Repts. DSDP, 27: Washington US Government Printing Office, pp 499–505Google Scholar
  10. Bolli HM, Beckmann JP et al (1994) Benthic foraminiferal biostratigraphy of the South Caribbean Region. Cambridge University Press, Cambridge, p 408Google Scholar
  11. Bralower TJ, Premoli Silva I et al (2002) Proc. ODP, Init. Repts, 198 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845–9547, USAGoogle Scholar
  12. Bralower TJ, Rohl U et al (1997) High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: is there a causal link? Geology 11:963–966CrossRefGoogle Scholar
  13. Cook HE, Zemmels I et al (1974) X-ray mineralogy data, eastern Indian Ocean—Leg 27 Deep Sea Drilling Project. In: Heirtzler JR, Veevers JJ, Bolli HM (eds) Init. Repts. DSDP, 27: Washington US Government Printing Office, pp 535–548Google Scholar
  14. Corfield RM (1994) Palaeocene oceans and climate; an isotopic perspective. Earth-Sci Rev 37:225–252CrossRefGoogle Scholar
  15. Cramer BS, Wright AA et al (2003) Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 18(4):1097CrossRefGoogle Scholar
  16. Dickens GR (2000) Methane oxidation during the late Palaeocene thermal maximum. Bull Soc Geologique France 171:37–49Google Scholar
  17. Dickens GR, Castillo MM et al (1997) A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262CrossRefGoogle Scholar
  18. Dupuis C, Aubry MP et al (2003) The Dababiya Quarry section: lithostratigraphy, clay mineralogy, geochemistry and paleontolgoy. Micropaleontology 49:41–59CrossRefGoogle Scholar
  19. Hancock HJL, Chaproniere GC et al (2002) Early Palaeogene planktic foraminiferal and carbon isotope stratigraphy, Hole 762C, Exmouth Plateau, northwest Australian margin. J Micropalaeontol 21:29–42Google Scholar
  20. Hancock HJL, Dickens GR (20050 Carbonate dissolution episodes in Paleocene and Eocene sediment, Shatsky Rise, west-central Pacific. In: Bralower TJ, Premoli Silva I, Malone MJ (eds) Proceedings of ODP, science results, 198 [Online]. Available from World Wide Web: <>. [Cited 2005–09-04]
  21. Hancock HJL, Dickens GR et al (2003) Foraminiferal and carbon isotope stratigraphy through the Paleocene–Eocene transition at Dee Stream, Marlborough, New Zealand. N Z J Geol Geophy 46:1–19Google Scholar
  22. Hollis CJ, Dickens GR et al (2005) The Paleocene–Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. Palaeogeogr Palaeoclimatol Palaeoecol 215:313–343CrossRefGoogle Scholar
  23. Huber BT (1991) Paleogene and early Neogene planktonic foraminifer biostratigraphy of sites 738 and 744, Kerguelen Plateau (southern Indian Ocean). Proc Ocean Drilling Program Sci Results 119:427–449Google Scholar
  24. Katz ME, Pak DK et al (1999) The source and fate of massive carbon input druing the latest Paleocene thermal maximum. Science 286:1531–1533CrossRefGoogle Scholar
  25. Katz ME, Wright JD et al (2003) Early Cenozoic benthic foraminiferal isotopes: species reliability and interspecies correction factors. Paleoceanography 18(2):1024. DOI 10.1029/2002PA000798Google Scholar
  26. Katz ME, Wright JD et al (2005) Biological overprint of the geological carbon cycle. Mar Geol 217:323–338CrossRefGoogle Scholar
  27. Kelly DC (2002) Response of Antarctic (ODP Site 690) planktonic foraminifera to the Paleocene–Eocene thermal maximum; faunal evidence for ocean/climate change. Paleoceanography 17(4):1071. DOI 10.1029/2002PA000761Google Scholar
  28. Kennett JP (1982) Marine geology. Prentice-Hall, Englewood Cliffs, p 813Google Scholar
  29. Kennett JP, Stott L (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225–229CrossRefGoogle Scholar
  30. Krasheninnikov GF (1974) Cretaceous and Paleogene planktonic foraminifera, Leg 27 of the Deep Sea Drilling Project. In: Heirtzler JR, Veevers JJ, Bolli HM (eds) Init. Repts. DSDP, 27: Washington US Government Printing Office, pp 663–671Google Scholar
  31. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions; carbonates and organic matter. Chem Geol 161:181–198CrossRefGoogle Scholar
  32. Kurtz A, Kump LR et al (2003) Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18(4):1090. DOI 10.1029/2003PA000908Google Scholar
  33. Loeblich AR Jr, Tappan HN (1988) Foraminiferal genera and their classification. Von Nostrand and Reinhold Company, New York, p 970Google Scholar
  34. Lourens L, Sluijs A et al (2005) Astronomical modulation of late Palaeocene to early Eocene global warming events. Nature 435:1083–1087CrossRefGoogle Scholar
  35. Lyle MW, Wilson PA et al (2002) Proc. ODP Init. Repts., 199 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845–9547, USAGoogle Scholar
  36. Mekik FA, Loubere PW et al (2002) Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: demonstration and a new proxy. Global Biogeochem Cycles 16:1–15CrossRefGoogle Scholar
  37. Mueller G, Gastner M (1971) The “Karbonate-Bombe”, a simple device for the determination of the carbonate content in sediments, soils, and other materials. Neues Jahrbuch fuer Mineralogie Monatshefte 10:466–469Google Scholar
  38. Muller RD, Gaina C et al (2000) Seafloor spreading around Australia. In: Veevers JJ (ed) Billion-year earth history of Australia and neighbours in Gondwanaland—BYEHA, pp 18–28Google Scholar
  39. Murray J, Renard AF (1891) Deep-sea deposits based on the specimens collected during the voyage of H.M.S. Challenger in the years 1872 to 1876. Longmans, London, p 525Google Scholar
  40. Nomura R (1991) Paleoceanography of Upper Maestrichtian to Eocene benthic foraminiferal assemblages at sites 752, 753 and 754, Eastern Indian Ocean. In: Weissel J, Peirce J, Taylor E et al (eds) Proc. ODP, Sci. Results, College Station, TX Ocean Drilling Program, pp 3–29Google Scholar
  41. Olsson RK, Hemleben C et al (1999) Atlas of Paleocene planktonic Foraminifera. Smithsonian Institution, Washington, p 252Google Scholar
  42. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:659–699CrossRefGoogle Scholar
  43. Peterson MNA (1966) Calcite: rates of dissolution in a vertical profile in the central Pacific. Science 154:1542–1544CrossRefGoogle Scholar
  44. Proto-Decima F (1974) Leg 27 calcareous nannoplankton. In: Heirtzler JR, Veevers JJ, Bolli HM et al (eds) Init. Repts. DSDP, 27: Washington US Government Printing Office, pp 589–593Google Scholar
  45. Quillevere F, Norris RD (2003) Ecological development of acarininids (planktonic Foraminifera) and hydrographic evolution of Paleocene surface waters. In: Wing SL, Gingerich PD, Schmitz B et al (eds) Causes and consequences of globally warm climates in the early Paleogene. The Geological Society of America, Spec. Paper 369, pp 223–238Google Scholar
  46. Ravizza G, Norris RN et al (2001) An osmium isotope excursion associated with the late Paleocene thermal maximum; evidence of intensified chemical weathering. Paleoceanography 16:155–163CrossRefGoogle Scholar
  47. Rea DK, Lyle M (2005) Paleogene calcite compensation depth in the eastern subtropical Pacific: Answers and questions. Paleoceanography 20:PA1012. DOI 10.1029/2004PA001064Google Scholar
  48. Robinson PT, Whitford DJ (1974) Basalts from the eastern Indian Ocean, DSDP Leg 27. In: Heirtzler JR, Veevers JJ, Bolli HM (eds) Init. Repts. DSDP, 27: Washington US Government Printing Office, pp 551–559Google Scholar
  49. Shackleton NJ, Hall MA (1984) Carbon isotope data from Leg 74 sediments. In: Moore JTC, Rabinowitz PD, Boersma A et al (eds) Init. Repts. DSDP, 74: Washington US Government Printing Office, pp 613–619Google Scholar
  50. Shipboard Scientific Party (1974) Site 259. In: Heirtzler JR, Veevers JJ, Bolli HM et al (eds) Init. Repts. DSDP, 27: Washington US Government Printing Office, pp 15–29Google Scholar
  51. Shipboard Scientific Party (1990) Site 766. In: Gradstein FM, Ludden JN, Adamson AC et al (eds) Proc. ODP Init. Reps, 123: College Station, TX Ocean Drilling Program, pp 269–352Google Scholar
  52. Shipboard Scientific Party (2004) Leg 208 summary. In: Zachos JC, Kroon D, Blum P (eds) Proc. ODP, Init. Repts., 198, College Station, TX Ocean Drilling Program, pp 1–112Google Scholar
  53. Stott LD, Kennett JP (1990) Antarctic Paleogene planktonic foraminifer biostratigraphy; ODP Leg 113, Sites 689 and 690. In: Barker PF, Kennett JP et al (eds) Proc. ODP, Sci. Results, 113: College Station, TX Ocean Drilling Program, pp 549–565Google Scholar
  54. Thomas E (1990) Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proc ODP Sci Results 113:571–594Google Scholar
  55. Thomas E (1998) The biogeography of the late Paleocene benthic foraminiferal extinction. In: Aubry MP, Lucas SG, Berggren WA (eds) Late Paleocene–early Eocene climatic and biotic events in the marine and terrestrial records, Columbia University Press, New York, pp 214–243Google Scholar
  56. Thomas E, Shackleton NJ (1996) The Paleocene–Eocene benthic foraminiferal extinction and stable isotope anomalies. In: Knox RWOB, Corfield RM, Dunay RE (eds) Correlation of the early Paleogene in Northwest Europe, 101 Geological Society London Special Publication, pp 401–441Google Scholar
  57. Thomas E, Zachos JC (1999) Deep-sea faunas during the late Paleocene–early Eocene climate optimum; boredom or boredom with short periods of terror? Geological Society of America, 1999 annual meeting, 31: Anonymous Geological Society of America (GSA), p 122Google Scholar
  58. Thomas E, Zachos JC (2000) The late Paleocene thermal maximum a unique event? GFF 122:169–170Google Scholar
  59. Thomas E, Zachos JC et al (2000) Deep-sea environments on a warm earth: latest Paleocene–early Eocene. In: Huber BT, MacLeod K, Wing SL (eds) Warm climates in Earth history. Cambridge University Press, Cambridge, pp 132–160Google Scholar
  60. Thompson G, Bryan WB et al (1978) Basalts and related rocks from deep-sea drilling sites in the central and eastern Indian Ocean. Mar Geol 26:119–138CrossRefGoogle Scholar
  61. Thunell RC (1976) Calcium carbonate dissolution history in late Quaternary deep-sea sediments, western Gulf of Mexico. Q Res 6:281–297CrossRefGoogle Scholar
  62. Tjalsma RC, Lohmann GP (1983) Paleocene–Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropaleontol Spec Publ 4:1–90Google Scholar
  63. Toumarkine M, Luterbacher HP (1985) Paleocene and Eocene planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy, Cambridge University Press, Cambridge, pp 87–154Google Scholar
  64. Tyrrell T, Zeebe RE (2003) History of carbonate ion concentration over the last 100 million years. Geochim Cosmochim Acta 68:3521–3530CrossRefGoogle Scholar
  65. Valyashko GM, Gorodnitskiy AM et al (1989) Tectonic evolution of Shatsky Uplift on the geomagnetic surveyGoogle Scholar
  66. van Andel TH (1975) Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett 26:187–194CrossRefGoogle Scholar
  67. van Morkhoven FPCM, Berggren WA et al (1986) Cenozoic cosmopolitan deep-water benthic foraminifera. Bulletin des Centres de Recherches Exploration–Production Elf-Aquitaine, Memoire 11:421Google Scholar
  68. Veevers JJ, Tayton JW (1985) Prominent magnetic anomaly along the continent-ocean boundary between the northwestern margin of Australia (Exmouth and Scott plateaus) and the Argo abyssal plain. Earth Planet Sci Lett 72:415–426CrossRefGoogle Scholar
  69. Widmark JGV (1997) Deep-sea benthic foraminifera from Cretaceous–Paleogene boundary strata in the South Atlantic-taxonomy and paleoecology. Fossils Strata 43:1–94Google Scholar
  70. Williams DF, Gribble D et al (1985a) Dissolution and water-mass patterns in the Southeast Indian Ocean; Part II, The Pleistocene record from Brunhes to Matuyama age sediments. Geol Soc Am Bull 96:190–202CrossRefGoogle Scholar
  71. Williams DF, Healy-Williams N et al (1985b) Dissolution and water-mass patterns in the Southeast Indian Ocean; Part I, evidence from recent to late Holocene foraminiferal assemblages. Geol Soc Am Bull 96:176–189CrossRefGoogle Scholar
  72. Zachos J, Pagani M et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  73. Zachos JC, Kroon D et al (2004) Proc. ODP, Init. Repts, 208 [Online]. Available from World Wide Web: [Cited 2005–30-01]
  74. Zachos JC, Rohl U et al (2005) Extreme acidification of the Atlantic Ocean at the Paleocene-Eocene Boundary (∼ 55 Mya). Science 308:1611–1615. DOI 10.1126/science.1109004Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Haidi J. L. Hancock
    • 1
    Email author
  • Gerald R. Dickens
    • 2
  • Ellen Thomas
    • 3
  • Kevin L. Blake
    • 4
  1. 1.Earth and Environmental SciencesJames Cook UniversityTownsvilleAustralia
  2. 2.Department of Earth Science Rice UniversityHoustonUSA
  3. 3.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  4. 4.Advanced Analytical CentreJames Cook UniversityTownsvilleAustralia

Personalised recommendations