International Journal of Earth Sciences

, Volume 96, Issue 2, pp 353–361

A numerically calibrated reference level (MP28) for the terrestrial mammal-based biozonation of the European Upper Oligocene

  • Dieter F. Mertz
  • Paul R. Renne
  • Michael Wuttke
  • Clemens Mödden
Original Paper

Abstract

The fauna of the Enspel (Westerwald) and the neighbouring Kärlich (Neuwied basin) fossil deposits correspond to the Upper Oligocene Mammal Paleogene (MP) reference level 28 and 28–30, respectively. Basaltic flows and a trachyte tuff terminating and predating the fossil deposit sedimentation allow to numerically calibrate the MP reference levels by radioisotope dating. Laser fusion 40Ar/39Ar step heating on volcanic feldspars yield a time interval of 24.9–24.5 Ma for reference level MP28 at Enspel and a maximum age of 25.5 Ma for the time interval MP28–MP30 at Kärlich. Interpolation between the time intervals determined for the Enspel reference level MP28 and the age of the global Oligocene/Miocene boundary of 24.0 ± 0.1 Ma taken from literature results in time intervals of 24.5–24.2 Ma and 24.2–23.9 Ma for the younger reference levels MP29 and MP30, respectively. These intervals of ≤ 0.4 m.y. for MP reference levels of the latest Oligocene are short relative to older Oligocene MP reference levels 21–27 between 34 and 25 Ma. Since subdivision into MP reference levels essentially is based on assemblages of mammal taxa and on evolutionary changes in tooth morphology of mammals short MP time intervals during the latest Oligocene indicate a rapid evolutionary change relative to the early Oligocene.

Keywords

Oligocene 40Ar/39Ar dating Mammal Paleogene (MP) reference level Numerical calibration Evolutionary change 

References

  1. Baadsgaard H, Lipson J, Folinsbee RE (1961) The leakage of radiogenic argon from sanidine. Geochim Cosmochim Acta 25:147–157CrossRefGoogle Scholar
  2. Berggren WA, Kent DV, Swisher III CC, Aubry MP (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA et al (eds) Geochronology, time scales, and global stratigraphic correlation. SEMP special publication 54:129–212Google Scholar
  3. Bibus E (1983) Distribution and dimension of young tectonics in the Neuwied basin and the Lower Middle Rhine. In: Fuchs K et al (eds) Plateau uplift, the rhenish shield—a case history. Springer, Berlin Heidelberg New York, pp 55–61Google Scholar
  4. BiochroM’97 (1997) In: Aguilar JP, Legendre S, Michaux J (eds). Actes du congres biochroM’97. Memoires et travaux de l’E.P.H.E., Institut de Montpellier 21:769–805Google Scholar
  5. Boenigk W, Frechen M (2001) Zur Geologie der Kärlicher Hauptwand. Mainzer geowiss Mitt 30:123–194Google Scholar
  6. Brunet M, Vianey-Liaud M (1987) Mammalian reference levels MP21–30. In: Schmidt-Kittler N (ed) International symposium on mammalian biostratigraphy and paleoecology of the European Paleogene. Münchner Geowiss Abh Reihe A 10:30–31Google Scholar
  7. Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res 97:13917–13951CrossRefGoogle Scholar
  8. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095CrossRefGoogle Scholar
  9. Cas RAF, Wright JV (1995) Volcanic successions. Chapman & Hall, London, pp 1–528Google Scholar
  10. Engesser B, Mödden C (1997) A new version of the biozonation of the Lower Freshwater Molasse (Oligocene and Agenian) of Switzerland and Savoy on the basis of fossil mammals. In: Aguilar JP, Legendre S, Michaux J (eds) Actes du Congres BiochroM’97. Memoires et Travaux de l’E.P.H.E., Institut de Montpellier 21:475–499Google Scholar
  11. Engesser B, Storch G (1999) Eomyiden (Mammalia, Rodentia) aus dem oberoligozän von Enspel im Westerwald (Westdeutschland). Eclogae Geol Helv 92:483–493Google Scholar
  12. Felder M, Weidenfeller M, Wuttke M (1998) Lithologische Beschreibung einer Forschungsbohrung im Zentrum des oberoligozänen, vulkano-lakustrinen Beckens von Enspel/Westerwald (Rheinland-Pfalz; Bundesrepublik Deutschland). Mainzer geowiss Mitt 27:101–136Google Scholar
  13. Frechen J (1976) Siebengebirge am Rhein, Laacher Vulkangebiet, Maargebiet der Westeifel. Sammlung Geologischer Führer 56. Borntraeger, Berlin, pp 1–209Google Scholar
  14. Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG, Smith DG (1990) A geological time scale 1989. Cambridge University Press, Cambridge, pp 1–263Google Scholar
  15. Heizmann EPJ, Mörs T (1994) Neue Wirbeltierfunde aus dem Oberoligozän der Tongrube Kärlich und ihre Bedeutung für die Tertiär-Stratigraphie des Neuwieder Beckens (Rheinland-Pfalz, Deutschland). N Jb Geol Paläont Abh 192:17–36Google Scholar
  16. Hofmann P, Urbat M, Hensel A, Schäfer P (2003) Age model for the Late Oligocene Kärlicher Blauton of the Neuwied Basin, Germany. N Jb Geol Paläont Mh (5):283–296Google Scholar
  17. Köhler J (1998) Die Fossillagerstätte Enspel—Vegetation, Vegetationsdynamik und Klima im Oberoligozän. Dissertation Universität Tübingen, pp 1–211Google Scholar
  18. Legendre S, Lévêque F (1997) Étalonnage de l´échelle biochronologique mammalienne du Paléogène d´Éurope occidentale: vers une intégration à l´échelle globale. In: Aguilar JP, Legendre S, Michaux J (eds) Actes du Congres BiochroM’97. Memoires et Travaux de l’E.P.H.E., Institut de Montpellier 21:461–473Google Scholar
  19. Lehmann E (1930) Der Basalt vom Stöffel (Westerwald) und seine essexitisch-theralithischen Derivate. Chem Erde 5:319–375Google Scholar
  20. Le Maitre RW, Bateman A, Dudek A et al (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, pp 1–193Google Scholar
  21. Lippolt HJ (1961) Altersbestimmungen nach der K–Ar-Methode bei kleinen Argon- und Kaliumkonzentrationen. Dissertation Universität Heidelberg, pp 1–106Google Scholar
  22. Lippolt HJ (1978) K–Ar-Untersuchungen zum Alter des Rhön-Vulkanismus. Fortschr Miner 56:1–85Google Scholar
  23. Lippolt HJ, Fuhrmann U (1982) K–Ar age determinations and the correlation of Tertiary volcanic activities in Central Europe. Geol Jahrb D52:113–135Google Scholar
  24. Lippolt HJ, Todt W (1978) Isotopische Altersbestimmungen an Vulkaniten des Westerwaldes. N Jahrb Geol Paläont Mh 6:332–352Google Scholar
  25. Lippolt HJ, Baranyi I, Todt W (1975) Die Kalium-Argon-Alter der postpermischen Vulkanite des nordöstlichen Oberrheingrabens. Aufschluß Sonderb 27:205–212Google Scholar
  26. Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004, pp 409–440Google Scholar
  27. Marti J, Mitjavila J, Roca E, Aparicio A (1992) Cenozoic magmatism of the Valencia through (Western Mediterranean): relationship between structural evolution and volcanism. Tectonophys 203:145–165CrossRefGoogle Scholar
  28. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200 million year old continental flood basalts of the Central Atlantic magmatic province. Science 284:616–618CrossRefGoogle Scholar
  29. McDougall I, Maier R, Sutherland-Hawkes P, Gleadow AJW (1980) K–Ar age estimate for the KBS Tuff, East Turkana, Kenya. Nature 284:230–234CrossRefGoogle Scholar
  30. Mertz DF, Renne PR (2005) A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. Cour Forschungsinst Senckenberg 255:67–75Google Scholar
  31. Mertz DF, Swisher CC, Franzen JL, Neuffer FO, Lutz H (2000) Numerical dating of the Eckfeld maar fossil site, Eifel, Germany. Naturwiss 87:270–274CrossRefGoogle Scholar
  32. Meyer W, Stets J (1996) Das Rheintal zwischen Bingen und Bonn. Sammlung geologischer Führer 89. Borntraeger, Berlin, pp 1–386Google Scholar
  33. Michon L, Merle O (2001) The evolution of the Massif Central rift: spatio-temporal distribution of the volcanism. Bull Soc Geol France 172:201–211CrossRefGoogle Scholar
  34. Mödden C (1993) Revision der Archaeomyini SCHLOSSER (Rodentia, Mammalia) des europäischen Oberoligozän. Schweiz Paläont Abh 115:1–83Google Scholar
  35. Müller-Sohnius D, Horn P, Huckenholz HG (1989) Kalium-Argon-Datierungen an tertiären Vulkaniten der Hocheifel (BRD). Chem Erde 49:119–136Google Scholar
  36. Pirrung BM (1998) Zur Entstehung isolierter alttertiärer Seesedimente in zentraleuropäischen Vulkanfeldern. Mainzer Naturwiss Archiv Bh 20, pp 1–117Google Scholar
  37. Pirrung M, Büchel G, Jacoby W (2001) The Tertiary volcanic basins of Eckfeld, Enspel and Messel (Germany). Zeitschr dt Geol Ges 152:27–59Google Scholar
  38. Renne PR, Basu AR (1991) Rapid eruption of the Siberian traps flood basalts at the Permo-Triassic boundary. Science 253:176–179CrossRefGoogle Scholar
  39. Renne PR, Sharp WD, Deino AL, Orsi G, Civetta L (1997) 40Ar/39Ar dating into the historical realm: calibration against Pliny the Younger. Science 277:1279–1280CrossRefGoogle Scholar
  40. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  41. Rittmann U, Lippolt HJ (1998) Evidence for distortion of Tertiary K/Ar ages by excess argon—example given by three alkali olivine basalts from Northern Hesse, Germany. Eur J Mineral 10:95–110Google Scholar
  42. Russell DE, Hartenberger JL, Pomerol C, Sen S, Schmidt-Kittler N, Vianey-Liaud M (1982) Mammals and stratigraphy: The Paleogene of Europe. Palaeovertebrata Mém Extraordinaire, pp 1–77Google Scholar
  43. Schlunegger F, Burbank DW, Matter A, Engesser B, Mödden C (1996) Magnetostratigraphic calibration of the Oligocene to Middle Miocene (30–15 Ma) mammal biozones and depositional sequences of the Swiss Molasse Basin. Eclogae geol Helv 89:753–788Google Scholar
  44. Shackleton NJ, Crowhurst SJ, Weedon GP, Laskar J (1999) Astronomical calibration of Oligocene–Miocene time. Royal Soc London Philosoph Transact Ser A 357:1907–1929Google Scholar
  45. Shackleton NJ, Hall MA, Raffi I, Tauxe L, Zachos J (2000) Astronomical calibration age for the Oligocene–Miocene boundary. Geology 28:447–450CrossRefGoogle Scholar
  46. Steiger RH, Jäger E (1977) Subcomission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  47. Steininger FF, Aubry MP, Berggren WA, Biolzi M, Borsetti AM, Cartlidge JE, Cati F, Corfield R, Gelati R, Iaccarino S, Napoleone C, Ottner F, Rögl F, Roetzel R, Spezzaferri S, Tateo F, Villa G, Zevenboom D (1997) The global stratotype section and point (GSSP) for the base of the Neogene. Episodes 201:23–28Google Scholar
  48. Storch G, Engesser B, Wuttke M (1996) Oldest fossil record of gliding in rodents. Nature 379:439–441CrossRefGoogle Scholar
  49. Todt W, Lippolt HJ (1975) K–Ar-Altersbestimmungen an Vulkaniten bekannter paläomagnetischer Feldrichtungen. I. Oberpfalz und Oberfranken. J Geophys 41:43–61Google Scholar
  50. Todt W, Lippolt HJ (1980) K–Ar age determinations on tertiary volcanic rocks: V. Siebengebirge, Siebengebirge-Graben. J Geophys 48:18–27Google Scholar
  51. Wilson GS, Lavelle M, Mcintosh WC et al (2002) Integrated chronostratigraphic calibration of the Oligocene–Miocene boundary at 24.0 ± 0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica. Geology 30:1043–1046CrossRefGoogle Scholar
  52. Zachos J, Pagani M, Sloan L, Thoma E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Dieter F. Mertz
    • 1
    • 2
  • Paul R. Renne
    • 2
    • 3
  • Michael Wuttke
    • 4
  • Clemens Mödden
    • 1
  1. 1.Institut für GeowissenschaftenJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Berkeley Geochronology CenterBerkeleyUSA
  3. 3.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  4. 4.Landesamt für Denkmalpflege Rheinland-PfalzReferat Erdgeschichtliche DenkmalpflegeMainzGermany

Personalised recommendations