Advertisement

International Journal of Earth Sciences

, Volume 96, Issue 2, pp 253–269 | Cite as

New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif

  • Bodo Weber
  • Alexander Iriondo
  • Wayne R. Premo
  • Lutz Hecht
  • Peter Schaaf
Original Paper

Abstract

The histories of the pre-Mesozoic landmasses in southern México and their connections with Laurentia, Gondwana, and among themselves are crucial for the understanding of the Late Paleozoic assembly of Pangea. The Permian igneous and metamorphic rocks from the Chiapas massif as part of the southern Maya block, México, were dated by U–Pb zircon geochronology employing the SHRIMP (sensitive high resolution ion microprobe) facility at Stanford University. The Chiapas massif is composed of deformed granitoids and orthogneisses with inliers of metasedimentary rocks. SHRIMP data from an anatectic orthogneiss demonstrate that the Chiapas massif was part of a Permian (∼ 272 Ma) active continental margin established on the Pacific margin of Gondwana after the Ouachita orogeny. Latest Permian (252–254 Ma) medium- to high-grade metamorphism and deformation affected the entire Chiapas massif, resulting in anatexis and intrusion of syntectonic granitoids. This unique orogenic event is interpreted as the result of compression due to flat subduction and accretionary tectonics. SHRIMP data of zircon cores from a metapelite from the NE Chiapas massif yielded a single Grenvillian source for sediments. The majority of the zircon cores from a para-amphibolite from the SE part of the massif yielded either 1.0–1.2 or 1.4–1.5 Ga sources, indicating provenance from South American Sunsás and Rondonian-San Ignacio provinces.

Keywords

Geochronology SHRIMP Metamorphic rocks Maya SE México 

Notes

Acknowledgments

This work was supported by CONACYT project D41083-F, DFG/BMZ collaboration project HE2893/3,4-1, and CICESE internal project 644111. We thank Susana Rosas-Montoya, Victor Pérez-Arroyoz, and Gabriel Rendón-Márquez (CICESE) for their help in preparing the zircon separates and thin sections. We are grateful to Fernando Ortega-Gutiérrez and Mariano Elías-Herrera for their helpful discussion in the field. Ralf Hiller and Birgit Gruner assisted in the field and petrologic work. We are grateful to Joe Wooden for assistance in running the SHRIMP-RG at Stanford University and for being available almost round the clock. Many thanks to Martin Meschede (Greifswald, Germany) and an anonymous reviewer for their helpful comments. Last but not the least, we thank José Carlos Pisaño-Soto, Pedro Hernández Martínez, and all other staff members from “Reserva de la Biosfera La Sepultura” (Comisión Nacional de Áreas Naturales Protegidas) in Tuxtla Gutiérrez, Chiapas, for their logistical support during field work in the Sepultura area; thanks are also due to Armando Pohlenz and Don Martin Pohlenz for their hospitality and their logistical support at the Finca Custepec.

References

  1. Aleman A, Ramos VA (2000) Northern Andes. In: Cordani UG, Milani EJ, Thomas-Filho A, Campos DA (eds) Tectonic evolution of South America. 31st international geological congress, Rio de Janeiro, pp 453–480Google Scholar
  2. Bateson JH, Hall IHS (1977) The geology of the Maya Mountains, Belize. Institute of Geological Science, Overseas Mem, 3, Her Majesty’s Stationery Office, London, pp 1–44Google Scholar
  3. Bazard DR, Butler RF (1992) Paleomagnetism of the middle Jurassic Summerville Formation, east central Utah. J Geophys Res 97:119–130CrossRefGoogle Scholar
  4. Blum JD, Chamberlain CP, Hingston MP, Koeberl C, Marin LE, Schuraytz BC, Sharpton VL (1993) Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures. Nature 364:325–327CrossRefGoogle Scholar
  5. Campa MF, Coney PJ (1983) Tectono-stratigraphic terranes and mineral resource distributions in México. Can J Earth Sci 20:1040–1051Google Scholar
  6. Centeno-García E, Keppie JD (1999) Latest Paleozoic–early Mesozoic structures in the central Oaxaca Terrane of southern México: deformation near a triple junction. Tectonophysics 301:231–242CrossRefGoogle Scholar
  7. Collins WJ (2002) Hot orogens, tectonic switching, and creation of continental crust. Geology 30:535–538CrossRefGoogle Scholar
  8. Coney PJ, Campa MF (1987) Lithotectonic terrane map of México (west of the 91st meridian). U.S. Geological Survey Miscellaneous Field Studies Map MF-1874-D, scale 1:2,500,000Google Scholar
  9. Cordani UG, Sato K, Teixeira W, Tassinari CCG, Basei MAS (2000) Crustal evolution of the South American Platform. In: Cordani UG, Milani EJ, Thomas-Filho A, Campos DA (eds) Tectonic evolution of South America. 31st international geological congress, Rio de Janeiro, pp 19–40Google Scholar
  10. Dalziel WDI (1997) Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol Soc Am Bull 109:16–42CrossRefGoogle Scholar
  11. Damon PE, Shafiqullah M, Clark K (1981) Age trends of igneous activity in relation to metallogenesis in the southern Cordillera. In: Dickinson W, Payne WD (eds) Relations of tectonics to ore deposits in the southern Cordillera. Arizona Geological Society Digest, vol. 14. Arizona Geological Society, Tucson, pp 137–153Google Scholar
  12. Dengo G (1985) Mid America: tectonic setting for the Pacific margin from southern México to northwestern Colombia. In: Nairn AEM, Stehli FG (eds) The oceanic basins and margins, vol. 7a: the Pacific Ocean. Plenum, New York, pp 123–180Google Scholar
  13. Dewey JF, Pindell JL (1985) Neogene block tectonics of eastern Turkey and northern South America: continental application of the finite difference method. Tectonics 4:71–83CrossRefGoogle Scholar
  14. Dickinson WR, Lawton TF (2001) Carboniferous to Cretaceous assembly and fragmentation of México. Geol Soc Am Bull 113:1142–1160CrossRefGoogle Scholar
  15. Ducea MN, Gehlers GE, Shoemaker S, Ruiz J, Valencia VA (2004) Geologic evolution of the Xolapa Complex, southern México: evidence from U–Pb zircon geochronology. Geol Soc Am Bull 116:1016–1025CrossRefGoogle Scholar
  16. Elías-Herrera M, Ortega-Gutiérrez F (2002) Caltepec fault zone: an early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern México, and regional tectonic implications. Tectonics 21:1–19CrossRefGoogle Scholar
  17. French CD, Schenk CJ (1997) Map showing geology, oil and gas fields, and geologic provinces of the Caribbean Region. US Geological Survey open file report 97-470-KGoogle Scholar
  18. Geraldes MC, Randall Van Schmus W, Condie KC, Bell S, Teixeira W, Babinski M (2001) Proterozoic geologic evolution of the SW part of the Amazonian Craton in Mato Grosso state, Brazil. Precamb Res 111:91–128CrossRefGoogle Scholar
  19. Gutscher MA, Spakman W, Bijwaard H, Engdahl ER (2000) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19:814–833CrossRefGoogle Scholar
  20. Hatcher RD (2002) Alleghanian (Appalachian) orogeny, a product of zipper tectonics: rotational transpressive continent–continent collision and closing of ancient oceans along irregular margins. In: Martínez-Catalán JR, Hatcher RD, Arenas R, Díaz-García F (eds) Variscan–Appalachian dynamics: the building of the late Paleozoic basement. Geological Society of America special paper 364, Boulder, pp 199–208Google Scholar
  21. Hiller R, Weber B, Hecht L, Ortega-Gutiérrez F, Schaaf P, López-Martínez M (2004) The Sepultura unit—a medium to high grade metasedimentary sequence in the Chiapas Massif, SE México, vol. 4. Reunión Nacional de Ciencias de la Tierra, Querétaro, México, p 200Google Scholar
  22. Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252:1409–1412CrossRefGoogle Scholar
  23. Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorphic Geol 18:423–439CrossRefGoogle Scholar
  24. Iriondo A, Kunk MJ, Winick JA, CRM (2003) 40Ar/39Ar dating studies of minerals and rocks in various areas in Mexico. USGS/CRM Scientific Collaboration (Part I). U.S. Geological Survey open-file report 03-020, pp 1–79Google Scholar
  25. Keppie JD, Dostal J, Ortega-Gutiérrez F, Lopez R (2001) A Grenvillian arc on the margin of Amazonia: evidence from the southern Oaxacan Complex, southern México. Precamb Res 112:165–181CrossRefGoogle Scholar
  26. Keppie JD, Dostal J, Cameron KL, Solari LA, Ortega-Gutiérrez F, Lopez R (2003) Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern México: tectonic implications. Precamb Res 120:365–389CrossRefGoogle Scholar
  27. Keppie JD, Sandberg CA, Miller BV, Sánchez-Zavala JL, Nance RD, Poole FG (2004) Implications of Latest Pennsylvanian to Middle Permian paleontological and U–Pb SHRIMP data from the Tecomate Formation to re-dating tectonothermal events in the Acatlán Complex, southern México. Int Geol Rev 46:745–753Google Scholar
  28. Krogh TE, Kamo SL, Sharpton VL, Martin LE, Hildebrand AR (1993) U–Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater. Nature 366:731–734CrossRefGoogle Scholar
  29. Lawlor PJ, Ortega-Gutiérrez F, Cameron KL, Ochoa-Camarillo H, Lopez R, Sampson DE (1999) U–Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of Eastern México. Precamb Res 94:73–99CrossRefGoogle Scholar
  30. Lopez R, Cameron KL, Jones NW (2001) Evidence for Paleoproterozoic, Grenvillian, and Pan-African age crust beneath northeastern México. Precamb Res 107:195–214CrossRefGoogle Scholar
  31. Ludwig KR (2001a) ISOPLOT: a plotting and regression program for radiogenic isotope data, version 2.49. Geochronology Center, special publication 1a, Berkeley, pp 1–55Google Scholar
  32. Ludwig KR (2001b) Users manual for SQUID version 1.02. Geochronology Center, special publication 2, Berkeley, pp 1–19Google Scholar
  33. Marton G, Buffler RT (1994) Jurassic reconstruction of the Gulf of México basin. Int Geol Rev 36:545–586CrossRefGoogle Scholar
  34. Molina-Garza RS, Van der Voo R, Urrutia-Fucugauchi J (1992) Paleomagnetism of the Chiapas Massif, southern México: evidence for rotation of the Maya block and implications for the opening of the Gulf of México. Geol Soc Am Bull 104:1156–1168CrossRefGoogle Scholar
  35. Morán-Zenteno D (1984) Geología de la República Mexicana. Universidad Nacional Autónoma de México, INEGI, México, pp 1–88Google Scholar
  36. Murillo-Muñetón G (1994) Petrologic and geochronologic study of Grenville-age granulites and post-granulite plutons from the La Mixtequita area, state of Oaxaca in southern México, and their tectonic significance. M.S. thesis, University of Southern California, Los Angeles, pp 1–163Google Scholar
  37. Murillo-Muñetón G, Anderson JL, Tosdal RM (1994) A New Grenville-age granulite terrane in southern México, vol. 26. Geological Society of America Annual Meeting, Abstracts with Programs, p. A-48Google Scholar
  38. Nourse JA, Premo WR, Iriondo A, Stahl ER (2005) Contrasting Proterozoic basement provinces near the truncated margin of Laurentia, northwestern Sonora–Arizona border region (Chapter 4). In: Anderson TH, Nourse JA, McKee J, Steiner M (eds) The Mojave–Sonora Megashear Hypothesis: development, assessment, and alternatives. Geological Society of America special paper 393, Boulder pp 123–182Google Scholar
  39. Ortega-Gutiérrez F, Mitre-Salazar LM, Roldán-Quintana J, Sanchez-Rubio G, De La Fuente M (1990) H-3 Acapulco Trench to the Gulf of México across southern México. Centennial Continent/Ocean Transect#13. Geological Society of America, BoulderGoogle Scholar
  40. Ortega-Gutiérrez F, Mitre-Salazar LM, Roldan-Quintana J, Aranda-Gómez JJ, Morán-Zenteno D, Alaniz-Álvarez SA, Nieto-Samaniego AN (1992) Carta geológica de la República Mexicana 1:2,000,000. Universidad Nacional Autónoma de México, Instituto de Geología, MéxicoGoogle Scholar
  41. Ortega-Gutiérrez F, Ruiz J, Centeno-García E (1995) Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology 23:1127–1130CrossRefGoogle Scholar
  42. Pindell J, Kennan L, Barrett S (2000) Putting it all together again. AAPG Explor 21:34–37Google Scholar
  43. Ross CA (1986) Paleozoic evolution of southern margin of Permian basin. Geol Soc Am Bull 97:536–554CrossRefGoogle Scholar
  44. Schaaf P, Weber B, Weis P, Groß A, Ortega-Gutiérrez F, Köhler H (2002) The Chiapas Massif (México) revised: new geologic and isotopic data for basement characteristics. In: Miller H (ed) Contributions to Latin-American geology. Neues Jahrb Geol Paläontol Abh 225:1–23Google Scholar
  45. Solari LA, Dostal J, Ortega-Gutiérrez F, Keppie JD (2001) The 275 Ma arc-related La Carbonara stock in the northern Oaxacan Complex of southern México: U–Pb geochronology and geochemistry. Rev Mex Cienc Geol 18:149–161Google Scholar
  46. Solari LA, Keppie JD, Ortega-Gutiérrez F, Cameron KL, Lopez R, Hames WE (2003) 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern México: roots of an orogen. Tectonophysics 365:257–282CrossRefGoogle Scholar
  47. Spear FS (1981) An experimental study of hornblende stability and compositional variability in amphibolite. Am J Sci 281:697–734CrossRefGoogle Scholar
  48. Steiner MB, Walker JD (1996) Late Silurian plutons in Yucatan. J Geophys Res 101:17727–17735CrossRefGoogle Scholar
  49. Torres R, Ruiz J, Patchett PJ, Grajales JM (1999) Permo-Triassic continental arc in eastern México: tectonic implications for reconstructions of southern North America. In: Bartolini CW, Wilson JL, Lawton TF (eds) Mesozoic sedimentary and tectonic history of North-Central Mexico. Geological Society of America special paper 340, Boulder, pp 191–196Google Scholar
  50. Viele GW, Thomas WA (1989) Tectonic synthesis of the Ouachita orogenic belt. In: Hatcher RD Jr, Thomas WA, Viele GW (eds) The Appalachian–Ouachita orogenic belt in the United States, vol. F-2. Geological Society of America, Geology of North America, Boulder, pp 695–728Google Scholar
  51. Weber B (1998) Die magmatische und metamorphe Entwicklung eines kontinentalen Krustensegments: isotopengeochemische und geochronologische Untersuchungen am Mixtequita-Komplex, Südostmexiko. Münch Geol Hefte A 24, pp l–176Google Scholar
  52. Weber B, Hecht L (2003) Petrology and geochemistry of metaigneous rocks from a Grenvillian basement fragment in the Maya block: the Guichicovi complex, Oaxaca, Southern México. Precamb Res 124:41–67CrossRefGoogle Scholar
  53. Weber B, Köhler H (1999) Sm–Nd, Rb–Sr and U–Pb isotope geochronology of a Grenville terrane in southern México: origin and geologic history of the Guichicovi complex. Precamb Res 96:245–262CrossRefGoogle Scholar
  54. Weber B, Gruner B, Hecht L, Molina-Garza RS, Köhler H (2002) El descubrimiento de basamento metasedimentario en el macizo de Chiapas: la “Unidad La Sepultura”. GEOS 22:2–11Google Scholar
  55. Weber B, Cameron KL, Osorio M, Schaaf P (2005) A late Permian tectonothermal event in Grenville crust of the Southern Maya terrane: U–Pb zircon ages from the Chiapas massif, Southeastern México. Int Geol Rev 47:509–529Google Scholar
  56. Weis P (2000) Geologische und isotopengeochemische Untersuchungen zur magmatischen und metamorphen Entwicklung des Chiapas Massivs, Mexiko. Diplomarbeit Universität Freiburg and Universität München, Germany, pp 1–127Google Scholar
  57. Yañez P, Ruiz J, Patchett J, Ortega-Gutiérrez F, Gehrels GE (1991) Isotopic studies of the Acatlan complex, southern México: implications for Paleozoic North American Tectonics. Geol Soc Am Bull 103:817–828CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bodo Weber
    • 1
    • 7
  • Alexander Iriondo
    • 2
    • 6
  • Wayne R. Premo
    • 3
  • Lutz Hecht
    • 4
  • Peter Schaaf
    • 5
  1. 1.División Ciencias de la TierraCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada BCMexico
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  3. 3.US Geological SurveyDenver Federal CenterDenverUSA
  4. 4.Institut für Mineralogie, Museum für NaturkundeHumboldt-Universität BerlinBerlinGermany
  5. 5.Instituto de Geofísica and Instituto de GeologíaUniversidad Nacional Autónoma de México (UNAM)Coyoacan DFMexico
  6. 6.Centro de Geociencias UNAMQueretaroMexico
  7. 7.Earth Science DivisionCICESESan DiegoUSA

Personalised recommendations