Quaternary sediment dynamics in the Belgica mound province, Porcupine Seabight: ice-rafting events and contour current processes

  • D. Van Rooij
  • D. Blamart
  • T. Richter
  • A. Wheeler
  • M. Kozachenko
  • J.-P. Henriet
Original Paper


The Belgica cold-water coral banks on the eastern slope of the Porcupine Seabight are closely associated with bottom currents. In order to better understand the local temporal and spatial characteristics, as well as the palaeoclimatologic influences, a 26 m long core, taken on a small contourite drift, was studied. This sediment record of approximately 100 ka BP reveals new insights into the regional glacial and sedimentary processes, which are intrinsically linked to several geological, climatological, biological and hydrodynamic variables. The glacial sequences in the core contain six ice-rafting events (IRE). They are comparable with the North Atlantic Heinrich Events, although their characteristics show dominant influences from the proximal British–Irish Ice Sheet (BIIS). These IRE have a low magnetic susceptibility and are deposited during two or three ice-rafting pulses. The record of ice-rafting suggests a millennial-scaled BIIS destabilisation and confirms the start of a final retreat about 25 ka ago. Additionally, the glacial sequence corresponds to a muddy contourite, influenced by bottom-current strength variations during interstadials, possibly triggered by sporadic reintroductions of Mediterranean Outflow Water in a glacial North Atlantic Ocean. The interglacial sequence features an 11-m thick deep-water massive sand unit, probably deposited under a high-energy bottom-current regime.


Contourite Ice-rafting event British–Irish ice sheet Porcupine Basin Coral banks 



This study was funded through the OMARC EC FP5 GEOMOUND and ECOMOUND projects. We appreciate the efforts made by the captains, crews and shipboard parties of R/V Belgica (1997–2001), R/V Marion Dufresne (1999), R/V Discovery 248 (2000). Core MD99-2327 has been taken within the framework of the IMAGES programme. The IPEV and Yvon Balut are also thanked for the core acquisition and for logistic support. We are very grateful to S. Louwye for the use of the facilities of the UGent palaeontology lab. We also appreciated the discussions with J.-C. Duplessy and L. Labeyrie as well as the use of the LSCE facilities. O. Weber, M. Cremer and J. Saint-Paul (DGO, Université Bordeaux I) are acknowledged for their experience for the SCOPIX analyses. We would also like to thank A. Vaars and S. van der Gaast (NIOZ) for respectively the CORTEX XRF measurements and the discussion of the results. The authors would also like to acknowledge the many helpful and constructive comments of the reviewers J.C. Faugères and J.S. Laberg. DVR is a post-doctoral fellow funded by the FWO-Flanders.


  1. Akhurst MC, Stow DAV, Stoker MS (2002) Late Quaternary glacigenic contourite, debris flow and turbidite process interaction in the Faroe–Shetland Channel, NW European continental margin. In: Stow DAV, Pudsey CJ, Howe JA, Faugères JC, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geological Society memoirs 22, London, pp 73–84Google Scholar
  2. Armishaw JE, Holmes RW, Stow DAV (2000) The Barra Fan: a bottom-current reworked, glacially-fed submarine fans system. Mar Petrol Geol 17:219–238CrossRefGoogle Scholar
  3. Auffret GA, Pujol C, Baltzer A, Bourillet JF, Müller C, Tisot JP (1996) Quaternary sedimentary regime on the Berthois Spur (Bay of Biscay). Geomar Lett 16:76–84CrossRefGoogle Scholar
  4. Auffret GA, Zaragosi S, Dennielou B, Cortijo E, Van Rooij D, Grousset FE, Pujol C, Eynaud F, Siegert M (2002) Terrigenous fluxes at the Celtic margin during the last glacial cycle. Mar Geol 188:79–108CrossRefGoogle Scholar
  5. Bard E (1998) Geochemical and geophysical implications of the radiocarbon calibration. Geochim Cosmochim Acta 62:2025–2038CrossRefGoogle Scholar
  6. Beyer A, Schenke HW, Klenke M, Niederjasper F (2003) High resolution bathymetry of the eastern slope of the Porcupine Seabight. Mar Geol 198:27–54CrossRefGoogle Scholar
  7. Bond G, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:1005–1010CrossRefGoogle Scholar
  8. Bond G, Heinrich H, Broecker WS, Labeyrie LD, McManus J, Andrews JT, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360:245–249CrossRefGoogle Scholar
  9. Bowen DQ, Phillips FM, McCabe AM, Knutz PC, Sykes GA (2002) New data for the last glacial maximum in Great Britain and Ireland. Quat Sci Rev 21:89–101CrossRefGoogle Scholar
  10. Carter L, McCave IN (1994) Late Quaternary sediment pathways through the deep ocean, east of New Zealand. Paleoceanography 9(6):1061–1085CrossRefGoogle Scholar
  11. Chi J, Mienert J (1996) Linking physical property records of Quaternary sediments to Heinrich events. Mar Geol 131:57–73CrossRefGoogle Scholar
  12. De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231CrossRefGoogle Scholar
  13. De Mol B, Henriet JP, Canals M (2005) Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 515–533CrossRefGoogle Scholar
  14. Dorschel B, Hebbeln D, Rüggeberg A, Dullo WC, Freiwald A (2005) Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet Sci Lett 233:33–44CrossRefGoogle Scholar
  15. Dorschel B, Hebbeln D, Rüggeberg A, Dullo C (this volume) Carbonate budget of a cold-water coral carbonate mound: Propeller Mound, Porcupine Seabight. Int J Earth SciGoogle Scholar
  16. Dowling LA, Coxon P (2001) Current understanding of Pleistocene temperate stages in Ireland. Quat Sci Rev 20:1631–1642CrossRefGoogle Scholar
  17. Elliot M, Labeyrie LD, Bond G, Cortijo E, Turon JL, Tisnerat N, Duplessy JC (1998) Millennial-scale iceberg discharges in the Irminger Basin during the last glacial period: relationship with the Heinrich events and environmental settings. Paleoceanography 13(5):433–446CrossRefGoogle Scholar
  18. Faugères JC, Stow DAV (1993) Bottom-current-controlled sedimentation: a synthesis of the contourite problem. Sediment Geol 82:287–297CrossRefGoogle Scholar
  19. Faugères JC, Mézerais ML, Stow DAV (1993) Contourite drift types and their distribution in the North and South Atlantic Ocean basins. Sediment Geol 82:189–203CrossRefGoogle Scholar
  20. Faugères J-C, Stow DAV, Imbert P, Viana AR (1999) Seismic features diagnostic of contourite drifts. Mar Geol 162:1–38CrossRefGoogle Scholar
  21. Foubert A, Beck T, Wheeler AJ, Opderbecke J, Grehan A, Klages M, Thiede J, Henriet JP, the Polarstern ARK-XIX/3a shipboard party (2005) New view of the Belgica mounds, Porcupine Seabight, NE Atlantic: preliminary results from the Polarstern ARK-XIX/3a ROV cruise. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York pp 403–415Google Scholar
  22. Foubert A, Van Rooij D, Blamart D, Henriet JP (this volume) Linking X-ray imagery and magnetic properties as a proxy of the content of long cores in mound provinces; a case study from the Porcupine Basin. Int J Earth SciGoogle Scholar
  23. Grousset FE, Labeyrie LD, Sinko JA, Cremer M, Bond G, Duprat J, Cortijo E, Huon S (1993) Pattern of ice-rafted detritus in the glacial North Atlantic. Paleoceanography 8(2):175–192Google Scholar
  24. Grousset FE, Cortijo E, Huon S, Hervé L, Richter TO, Burdloff D, Duprat J, Weber O (2001) Zooming in on Heinrich layers. Paleoceanography 16(3):240–259CrossRefGoogle Scholar
  25. Hargreaves PM (1984) The distribution of Decapoda (Crustacea) in the open ocean and near-bottom over an adjacent slope in the northern North-East Atlantic Ocean during autumn 1979. J Mar Biolog Assoc UK 64:829–857Google Scholar
  26. Holland CH (2001) The geology of Ireland. Dunedin Academic, Edinburgh, p 531Google Scholar
  27. Huthnance JM (1995) Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Prog Oceanogr 35:353–431CrossRefGoogle Scholar
  28. Huvenne V, Blondel P, Henriet JP (2002) Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar Geol 189:323–341CrossRefGoogle Scholar
  29. Huvenne VAI, Beyer A, de Haas H, Dekindt K, Henriet JP, Kozachenko M, Olu-Le Roy K, Wheeler A, the TOBI/Pelagia 197, CARACOLE cruise participants (2005) The seabed appearance of different coral bank provinces in the Porcupine Seabight, NE Atlantic: results from sidescan sonar and ROV seabed mapping. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp. 535–569Google Scholar
  30. Huvenne VAI, Bailey W, Shannon PM, Naeth J, di Primio R, Henriet JP, Horsfield B, de Haas H, Wheeler AJ, Olu-Le Roy K (this volume) The Magellan mound province in the Porcupine Basin. Int J Earth SciGoogle Scholar
  31. Jansen JHF, Van der Gaast SJ, Koster B, Vaars AJ (1998) CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar Geol 151:143–153CrossRefGoogle Scholar
  32. Kassens H, Sarnthein M (1989) A link between paleoceanography, early diagenetic cementation, and shear strength maxima in Late Quaternary deep-sea sediment? Paleoceanography 12:253–269CrossRefGoogle Scholar
  33. Knutz PC, Austin WEN, Jones EJW (2001) Millennial-scaled depositional cycles related to British Ice Sheet variability and North Atlantic paleocirculation since 45 kyr BP, Barra Fan, UK margin. Paleoceanography 16(1):53–64CrossRefGoogle Scholar
  34. Knutz PC, Jones EJW, Austin WEN, van Weering TCE (2002) Glacimarine slope sedimentation, contourite drifts and bottom current pathways on the Barra Fan, UK North Atlantic margin. Mar Geol 188:129–146CrossRefGoogle Scholar
  35. Le Bas T, Hühnerbach V (1999) PRISM processing of remotely-sensed imagery for seafloor. Mapping operators manual version 31. Southampton Oceanographic Centre, UKGoogle Scholar
  36. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat Res 27:1–29CrossRefGoogle Scholar
  37. McCabe AM, Clark PU (1998) Ice-Sheet variability around the North Atlantic Ocean during the last deglaciation. Nature 392:373–377CrossRefGoogle Scholar
  38. McCabe AM, Knight J, McCarron S (1998) Evidence for Heinrich event 1 in the British Isles. J Quat Sci 13(6):549–568CrossRefGoogle Scholar
  39. McCave IN, Manighetti B, Robinson SG (1995) Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10(3):593–610CrossRefGoogle Scholar
  40. Mertens K (2002) Ruimtelijke en temporele patronen in paleoproductiviteit van kalkschalig nannoplankton en diatomeeën langs NE-Atlantische continentale randen. M.Sc. thesis, Ghent University, BelgiumGoogle Scholar
  41. Migeon S, Weber O, Faugères JC, Saint-Paul J (1999) SCOPIX: a new X-ray imaging system for core analysis. Geomar Lett 18:251–255CrossRefGoogle Scholar
  42. Moore JG, Shannon PM (1992) Palaeocene–Eocene deltaic sedimentation, Porcupine Basin, offshore Ireland—a sequence stratigraphic approach. First Break 10(12):461–469Google Scholar
  43. Moros M, Kuijpers A, Snowball I, Lassen S, Bäckström D, Gingele F, McManus J (2002) Were glacial iceberg surges in the North Atlantic triggered by climatic warming? Mar Geol 192:393–417CrossRefGoogle Scholar
  44. New AL, Barnard S, Herrmann P, Molines JM (2001) On the origin and pathway of the saline inflow to the Nordic Seas: insights from models. Prog Oceanogr 48:255–287CrossRefGoogle Scholar
  45. Pingree RD, Le Cann B (1989) Celtic and Armorican slope and shelf residual currents. Prog Oceanogr 23:303–338CrossRefGoogle Scholar
  46. Rebesco M, Stow DAV (2001) Seismic expression of contourites and related deposits: a preface. Mar Geophys Res 22(5–6):303–308CrossRefGoogle Scholar
  47. Reed DL, Meyer AW, Silver EA, Prasetyo H (1987) Contourite sedimentation in an intraoceanic forearc system: eastern Sunda Arc, Indonesia. Mar Geol 76(3–4):223–242CrossRefGoogle Scholar
  48. Rice AL, Thurston MH, New AL (1990) Dense aggregations of a hexactinellid sponge, Pheronema carpenteri, in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Prog Oceanogr 24:179–196CrossRefGoogle Scholar
  49. Rice AL, Billet DSM, Thurston MH, Lampitt RS (1991) The Institute of Oceanographic Sciences Biology programme in the Porcupine Seabight: background and general introduction. J Mar Biol Assoc UK 71:281–310CrossRefGoogle Scholar
  50. Richter TO, Lassen S, van Weering TCE, de Haas H (2001) Magnetic susceptibility patterns and provenance of ice-rafted material at Feni Drift, Rockall Trough: implications for the history of the British–Irish ice sheet. Mar Geol 173:37–54CrossRefGoogle Scholar
  51. Roberts JM, Peppe OC, Lyndsey AD, Mercer DJ, Thomson WT, Gage JD, Meldrum DT (2005) Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observations. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 483–502CrossRefGoogle Scholar
  52. Ruddiman WF (1977) Late Quaternary deposition of ice-rafted sand in the subpolar North Atlantic (lat 40° to 65°N). Geol Soc Am Bull 88:1813–1827CrossRefGoogle Scholar
  53. Rüggeberg A, Dorschel B, Dullo WC, Hebbeln D (2005) Sedimentary patterns in the vicinity of a carbonate mound in the Hovland Mound Province, northern Porcupine Seabight. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 87–112CrossRefGoogle Scholar
  54. Rüggeberg A, Dullo C, Dorschel B, Hebbeln D (this volume) Environmental changes and growth history of Propeller Mound, Porcupine Seabight: evidence from benthic foraminiferal assemblages. Int J Earth SciGoogle Scholar
  55. Schönfeld J (2002) Recent benthic foraminiferal assemblages in deep high-energy environments from the Gulf of Cadiz (Spain). Mar Micropaleontol 44:141–162CrossRefGoogle Scholar
  56. Schönfeld J, Zahn R (2000) Late Glacial to Holocene history of the Mediterranean outflow: evidence from benthic foraminiferal assemblages and stable isotopes at the Portuguese margin. Palaeogeogr Palaeoclimatol Palaeoecol 159:85–111CrossRefGoogle Scholar
  57. Scourse JD, Hall IR, McCave IN, Young JR, Sugdon C (2000) The origin of Heinrich layers: evidence from H2 for European precursor events. Earth Planet Sci Lett 182:187–195CrossRefGoogle Scholar
  58. Shannon PM, McDonnell A, Bailey W, Croker PF, Naeth J, di Primio R, Horsfield B (this volume) The geological evolution of the Porcupine and Rockall region, offshore Ireland: the structural template for carbonate mound development. Int J Earth SciGoogle Scholar
  59. Skinner LC, McCave IN (2003) Analysis and modelling of gravity- and piston coring based on soil mechanics. Mar Geol 199:181–204CrossRefGoogle Scholar
  60. Snoeckx H, Grousset FE, Revel M, Boelaert A (1999) European contribution of ice-rafted sand to Heinrich layers H3 and H4. Mar Geol 158:197–208CrossRefGoogle Scholar
  61. Stow DAV, Johansson M (2000) Deep-water massive sands: nature, origin and hydrocarbon implications. Mar Petrol Geol 17:145–174CrossRefGoogle Scholar
  62. Stow DAV, Mayall M (2000) Deep-water sedimentary systems: new models for the 21st century. Mar Petrol Geol 17:125–135CrossRefGoogle Scholar
  63. Stow DAV, Piper DJW (1984) Deep-water fine-grained sediments: facies models. In: Stow DAV, Piper DJW (eds) Fine grained sediments, deep-water processes and facies. Geological Society special publication 15, London, pp. 611–646Google Scholar
  64. Stow DAV, Faugères JC, Gonthier E (1986) Facies distribution and textural variation in Faro drift contourites: velocity fluctuation and drift growth. Mar Geol 72:71–100CrossRefGoogle Scholar
  65. Stow DAV, Faugères JC, Howe JA, Pudsey CJ, Viana AR (2002) Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art. In: Stow DAV, Pudsey CJ, Howe JA, Faugères JC, Viana AR (eds) Deep-water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics. Geological Society memoirs 22, London, pp 7–20Google Scholar
  66. Thouveny N, de Beaulieu JL, Bonifay E, Creer KM, Guiot J, Icole M, Johnsen S, Jouzel J, Reille M, Williams T, Williamson D (1994) Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371:503–506CrossRefGoogle Scholar
  67. Van Rooij D, De Mol B, Huvenne V, Ivanov MK, Henriet JP (2003) Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol 195(1–4):31–53CrossRefGoogle Scholar
  68. Wheeler AJ, Bett BJ, Billet DSM, Masson DG (2000) Very high resolution side-scan mapping of deep-water coral mounds: surface morphology and processes affecting growth. EOS Trans 81(48)Google Scholar
  69. Wheeler AJ, Kozachenko M, Beyer A, Foubert A, Huvenne VAI, Klages M, Masson DG, Olu-Le-Roy K, Thiede J (2005) Sedimentary processes and carbonate mounds in the Belgica mound province, Porcupine Seabight, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 533–564Google Scholar
  70. Wheeler AJ, Beyer A, Freiwald A, de Haas H, Huvenne VAI, Kozachenko M, Olu-Le Roy K (this volume) Morphology and environment of deep-water coral mounds on the NW European margin. Int J Earth SciGoogle Scholar
  71. White M (this volume) The hydrographic setting for the carbonate mounds of the Porcupine Bank and Sea Bight. Int J Earth SciGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • D. Van Rooij
    • 1
    • 2
  • D. Blamart
    • 2
  • T. Richter
    • 3
  • A. Wheeler
    • 4
  • M. Kozachenko
    • 5
  • J.-P. Henriet
    • 1
  1. 1.Renard Centre of Marine Geology (RCMG)Ghent UniversityGentBelgium
  2. 2.Laboratoire des Sciences de Climat et de l’Environnement (LSCE)Laboratoire mixte CNRS/CEAGif-sur-YvetteFrance
  3. 3.Royal Netherlands Institute for Sea Research (NIOZ)TexelThe Netherlands
  4. 4.Department of Geology and Environmental Research InstituteUniversity College CorkCorkIreland
  5. 5.Coastal and Marine Resources CentreUniversity College CorkCorkIreland

Personalised recommendations