International Journal of Earth Sciences

, Volume 95, Issue 5, pp 929–944 | Cite as

Incision of a river curvature due to exhumed Miocene volcanic landforms: Danube Bend, Hungary

  • D. Karátson
  • K. Németh
  • B. Székely
  • Zs. Ruszkiczay-Rüdiger
  • Z. Pécskay
Original paper


A new model for the formation and relief evolution of the Danube Bend, northern Hungary, is discussed on geomorphological and volcanological grounds. We propose that the present-day U-shaped loop of the Danube Bend was partly inherited from the horseshoe caldera morphology of Keserűs Hill volcano, a mid-Miocene (ca 15 Ma) lava dome complex with an eroded central depression open to the north. According to combined palaeogeographical data and erosion rate calculations, the drainage pattern in the Danube Bend region was formed when Pleistocene tectonic movements resulted in river incision and sedimentary cover removal. Formation of the present curvature of the river was due to the exhumation of the horseshoe-shaped caldera as well as the surrounding resistant volcaniclastic successions (i.e. Visegrád Castle Hill) and a hilltop lava dome (Szent Mihály Hill). The process accelerated and the present narrow gorge of the Danube Bend was formed by very rapid, as young as late Quaternary differential tectonic uplift, also enhancing the original volcanic morphology. On the basis of comparative long-term erosion-rate calculations, we estimated successive elevation changes of the volcanic edifice, including partial burial in late Miocene time. In comparison with various order-of-magnitude changes, the mid-to-late Quaternary vertical movements show increased rates and/or base level drop in the Pannonian Basin.


Miocene volcanism Horseshoe-shaped caldera Differential uplift River incision Pannonian basin 



The Hungarian National Scientific Fund (OTKA T043644, T047104, F043346 and F043715), the German Research Foundation (DFG, Fr 610/20–1) are thanked for financial support, as well as the Bolyai Postdoctoral Fellowship (BO-00175/100) to DK, the Magyary Postdoctoral Fellowship to KN, the Békésy Postdoctoral Fellowship to BSz and the Marie Curie Fellowship to ZsRR. The manuscript has benefited from the useful comments and suggestions of G. Wörner (Göttingen) and an anonymous reviewer, as well as those of I. Dunkl, Gy. Gábris, W. Frisch, J. Kuhlemann and M. Ort. M. Ort is also acknowledged for checking the English. Parts of this work were carried out in the framework of a DAAD-MÖB German-Hungarian co-operation project and during DK’s Fulbright research period in Flagstaff, AZ, USA.


  1. Ahnert F (1970) Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. Am J Sci 268: 243–263CrossRefGoogle Scholar
  2. Balogh K (1985) K/Ar dating of Neogene volcanic activity in Hungary. Experimental technique, experiences and methods of chronological studies. Nuclear Research Institute of Hungary Reports, D/1: 277–288Google Scholar
  3. Bohn-Havas M, Korecz-Laky I (1980) Eggenburgi fauna a Felsőbogdányi(Csádri)-patakból (An Eggenburgian fauna from the Csádri stream of Felsőbogdány village: in Hungarian with English abstract). Földtani Közlöny (Bull Hung Geol Soc) 110: 276–283Google Scholar
  4. Bruch AA, Utescher T, Olivares CA, Dolakova N, Ivanov D, Mosbrugger V (2004) Middle and Late Miocene spatial temperature patterns and gradients in Central Europe—preliminary results based on palaeobotanical climate reconstructions. In Steininger FF, Kovar-Eder J, Fortelius MM (eds), The Middle Miocene environments and ecosystem dynamics of the Eurasian Neogene (EEDEN). Courier Forschungsinstitut Senckenberg 249:15–27Google Scholar
  5. Bulla B (1941) A Magyar medence pliocén és pleisztocén terraszai (Pliocene and Pleistocene terraces of the Hungarian basin: in Hungarian with German abstract). Földrajzi Közlemények (Bull Hung Geogr Soc) 69:199–230Google Scholar
  6. Cholnoky J (1937) A Dunazug-hegyvidék (The Dunazug Mountains: in Hungarian with German abstract). Földrajzi Közlemények (Bull Hung Geogr Soc) 65:1–27Google Scholar
  7. Cloetingh SAPL, Horváth F, Bada G, Lankreijer AC (eds) (2002) Neotectonics and surface processes: the Pannonian Basin and Alpine/Carpathian System. EGU Stephan Mueller Spec Publ Series 3: p 295Google Scholar
  8. Czakó T, Nagy B (1977) Fototektonikai és ércföldtani adatok korrelációja a Börzsöny hegységben (Correlation of phototectonic and ore geological data in the Börzsöny Mountains: in Hungarian). Ann Rep Hung Geol Inst 47–60Google Scholar
  9. Dulai A (1996) Taxonomic composition and paleoecological features of the Early Badenian (Middle Miocene) bivalve fauna of Szob (Börzsöny Mts., Hungary). Ann Hist.-nat Mus Nat Hung 88: 31–56Google Scholar
  10. Dunkl I, Frisch W (2002) Thermochronologic constraints on the Late Cenozoic exhumation along the Alpine and West Carpathian margins of the Pannonian basin. EGU Stephan Mueller Spec Publ Ser 3:135–147Google Scholar
  11. Dury GH (1976) Discharge prediction, present and former, from channel dimensions. J Hydrol 30:219–245CrossRefGoogle Scholar
  12. Einsele G (1992) Sedimentary basins: evolution, facies, and sediment budget. Springer, Berlin Heidelberg New York, p 628Google Scholar
  13. Gábris Gy (1994) Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova 6:495–501CrossRefGoogle Scholar
  14. Gábris Gy (2001) Paléohydrologie tardiglaciaire et holocène en Hongrie d’après l’ètude des méandres libres. Rev Géogr de l’Est 51:149–156Google Scholar
  15. Gméling K, Bendő Zs, Badics Zs, Izing I, Harangi Sz (2000) Initiation of the calc-alcaline volcanism of the Visegrád Mts., Northern Hungary: Ignimbrite deposits from the Holdvilág Creek. In: Tomljenović B, Balen D and Saftić B (eds) Pancardi meeting Abstracts Croatia, 37/3:46Google Scholar
  16. Hably L, Kvacek Z (1998) Pliocene mesophytic forests surrounding crater lakes in western Hungary. Rev Palaeobotany Palynology 101(1–4):257–269CrossRefGoogle Scholar
  17. Harangi Sz, Korpás L, Weiszburg T (1999) Miocene calc-alkaline volcanism of the Visegrád Mts, Northern Pannonian Basin. Beih z Eur J Mineral Exkursion A, 11/2:14–17Google Scholar
  18. Hinderer M (2001) Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta 14:231–263CrossRefGoogle Scholar
  19. Hinderer M, Einsele G (2001) The world’s large lake basins as denudation-accumulation systems and implications for their lifetimes. J Paleolimnol 26(4):355–372CrossRefGoogle Scholar
  20. Höfer A (2003) Vulkanologische und sedimentologische Untersuchungen der neogenen Vulkanoklastite nordwestlich von Pomáz (Visegrád Mts—Ungarn). Unpublished Master Thesis, TU Bergakademie, Freiberg, p 128Google Scholar
  21. Jánossy D (1979) A magyarországi pleisztocén tagolása gerinces faunák alapján (Division of the Hungarian Pleistocene on the basis of vertebrate faunas). Akadémiai Kiadó, Budapest, pp 1–207Google Scholar
  22. Joó I (1992) Recent vertical surface movements in the Carpathian Basin. Tectonophys 202(2–4):129–134CrossRefGoogle Scholar
  23. Karátson D (1996) Rates and factors of stratovolcano degradation in a continental climate: a complex morphometric analysis of nineteen Neogene/Quaternary crater remnants in the Carpathians. J Volcanol Geotherm Res 73:65–78CrossRefGoogle Scholar
  24. Karátson D, Márton E, Harangi Sz, Józsa S, Balogh K, Pécskay Z, Kovácsvölgyi S, Szakmány Gy, Dulai A (2000) Volcanic evolution and stratigraphy of the Miocene Börzsöny Mountains, Hungary: an integrated study. Geol Carpathica 51/1:325–343Google Scholar
  25. Karátson D, Németh K (2001) Lithofacies associations of an emerging volcaniclastic apron in a Miocene volcanic complex: an example from the Börzsöny Mountains, Hungary. Int J Earth Sci (Geol Rundsch) 90:776–794CrossRefGoogle Scholar
  26. Karátson D, Németh K, Józsa S, Borbély E (2001) An ancient debris avalanche initiated the river loop? The mystery of the Danube Bend, Hungary. 11th EUG Congress, Strasbourg, Abstract Volume, Section EV02Google Scholar
  27. Kázmér M (1990) Birth, life, and death of the Pannonian Lake. Palaeo Palaeo Palaeo 79:171–188Google Scholar
  28. Kéz A (1934) A Duna Budapest-Győr közötti szakaszának kialakulásáról (On the formation of the Danube river section between Budapest and Győr: in Hungarian). Földrajzi Közlemények (Bull Hung Geogr Soc) 57:175–193Google Scholar
  29. Konečny V, Lexa J (1994) Processes and products of shallow submarine volcanic activity in Southern Slovakia. IAVCEI General Assembly, Abstract Volume, AnkaraGoogle Scholar
  30. Korpás L, Balla Z, Czakó T, Csaba L (1977) Jelentés a Dunazug-hegység földtani kutatásának 1976/77. évi előkészítéséről (Report on the preparations of the geological research in the Dunazug Mountains: in Hungarian). Open Files Hung Geol Inst and Eötvös Loránd Geophys Inst, Budapest, p 177Google Scholar
  31. Korpás L (ed) (1998) Magyarázó a Börzsöny és a Visegrádi-hegység földtani térképéhez (Explanations to the geological map of the Börzsöny and Visegrád Mountains: in Hungarian with English abstract). Hung Geol Inst, p 216Google Scholar
  32. Kordos L (1979) A magyarországi paleoklimatológiai kutatások módszerei és eredményei (Methods and results of paleoclimatological research in Hungary: in Hungarian with English abstract). Országos Meteorológiai Intézet (Meteorological Institute of Hungary), p 167Google Scholar
  33. Kretzoi M, Pécsi M (1982) Pliocene and Quaternary chronostratigraphy and continental surface development of the Pannonian Basin. In: Pécsi M (eds). Quaternary studies in Hungary. INQUA, Hung Geogr Res Inst, Budapest, pp 11–42Google Scholar
  34. Láng S (1955) A Mátra és a Börzsöny természeti földrajza (Physical geography of the Mátra and Börzsöny Mountains: in Hungarian). Akadémiai Kiadó, Budapest, p 512Google Scholar
  35. Leél-Őssy Sz, Surányi G (2003). The peculiar hydrothermal caves in Budapest. Acta Geol Hung 46(4):407–430CrossRefGoogle Scholar
  36. Lipman PW, Mullineaux DR (1981) The 1980 eruptions of Mount St. Helens, Washington. Geol Surv Prof Pap 1250, p 843Google Scholar
  37. Meybeck M (1976) Total annual dissolved transport by world major rivers. Hydrol Sci Bull 21:265–289CrossRefGoogle Scholar
  38. Mike K (1969) Az Ipoly-völgy kialakulása (Formation of the Ipoly valley: in Hungarian). Földrajzi Értesítő (Geogr Bull Hung Geogr Inst) 18:289–314Google Scholar
  39. Molnár G, Timár G (2002) High accuracy Hotine Oblique Mercator approximation of the Hungarian EOV coordinates (in Hungarian with English summary). Geodézia és Kartográfia 54(3):18–22Google Scholar
  40. Mottl M (1942) Adatok a hazai ó- és újpleisztocén folyóteraszok emlős faunájához (Data to the mammal fauna of the Hungarian early and late Pleistocene fluvial terraces: in Hungarian). Ann Rep Hung Geol Inst 36:65–125Google Scholar
  41. Müller P (1984) Decapod Crustacea from the Badenian. Geologica Hungarica Ser Palaeontol 42, p 317Google Scholar
  42. Nagymaros Engineering Geological Map 1989. Hung Geol Surv, Hung Geol Inst, p 274Google Scholar
  43. Németh K, Martin U (1999) Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data. Z Geomorphol 43(4):417–438Google Scholar
  44. Németh K, Martin U, Csillag G (2003) Calculation of erosion rates based on remnants of monogenetic alkaline basaltic volcanoes of the Bakony-Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age. GeoLines 15:93–97Google Scholar
  45. Noszky J (1935) Adatok a visegrádi Dunaszoros terraszképződményeinek geológiai ismeretéhez (Data for the geological knowledge on the terraces in the Visegrád Gorge of the Danube). Ann Rep Hung Geol Inst 1935:1523–1543Google Scholar
  46. Palmer BA, Neall VE (1991) Contrasting lithofacies architexture in ring-plain deposits related to edifice construction and destruction, the Quaternary Stratford and Opunake Formations, Egmont Volcano, New Zealand. Sediment Geol 74:71–88CrossRefGoogle Scholar
  47. Pécsi M (1959) A magyarországi Duna-völgy kialakulása és felszínalaktana (Formation and geomorphology of the Hungarian Danube valley: in Hungarian with German abstract). Akadémiai Kiadó, Budapest, pp 346Google Scholar
  48. Pécsi M (1973) Geomorphological position and absolute age of the lower paleolithic site at Vértesszőlős, Hungary. Földrajzi Közlemények (Bull Hung Geogr Soc) 21(2):109–119Google Scholar
  49. Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Konečny V, Kovács M, Márton E, Kaličiak M, Széky-Fux V, Póka T, Gyamati P, Edelstein O, Rosu E, Žec B (1995) Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region. In: Neogene and related magmatism in the Carpatho-Pannonian Region, Downes H, Vaselli O (eds) Acta Vulcanol 7(2):15–28Google Scholar
  50. Prinz Gy (1936) Magyar földrajz (Hungarian geography: in Hungarian). In: Magyar föld, magyar faj I, Királyi Magyar Egyetemi Nyomda, Budapest, pp 1–394Google Scholar
  51. Ruszkiczay-Rüdiger Zs, Fodor L, Bada G, Leél-Őssy Sz, Horváth E, Dunai T (2005a) Quantification of Quaternary vertical movements in the central Pannonian Basin: a review of chronological data along the Danube river, Hungary. Tectonophys 410:157–172CrossRefGoogle Scholar
  52. Ruszkiczay-Rüdiger Zs, Dunai T, Bada G, Fodor L, Horváth E (2005b) Middle to Late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend (Pannonian Basin) using in situ produced 3He. Tectonophys 410:173–187CrossRefGoogle Scholar
  53. Schafarzik F (1918) A budapesti Duna paleohidrográfiája (Paleohydrography of the Danube at Budapest). Hidrológiai Közlöny (Bull Hung Hydrol) 13:35–67Google Scholar
  54. Schafarzik F, Vendl A (1929) Geológiai kirándulások Budapest környékén (Geological field trips around Budapest: in Hungarian). Stadium Sajtóvállalat Rt., Budapest, p 343Google Scholar
  55. Schréter Z (1953) A Budai- és Gerecsehegység peremi édesvízi mészkő előfordulásai (Travertine occurrences of the margin of the Buda and Gerecse Mountains: in Hungarian). Ann Rep Hung Geol Inst 111–146Google Scholar
  56. Schwarcz HP, Skoflek I (1982) New dates for the Tata, Hungary archaeological site. Nature 295: 590–591CrossRefGoogle Scholar
  57. Schweitzer F, Scheuer Gy (1995) Hungarian travertines. Acta Universitas Szegediensis. Acta Geographica 34(Special Issue):163–186Google Scholar
  58. Summerfield MA (1991) Global Geomorphology—an introduction to the study of landforms. Longman Scientific & Technical, p 537Google Scholar
  59. Sümeghy J (1938) Földtani kutatások Győrött és közvetlen környékén (Geological research at the town of Győr and its vicinity: in Hungarian). Rep Hung Geol Soc 23:108–133Google Scholar
  60. Szádeczky-Kardoss E (1938) Geologie der rumpfungarländischen Kleinen Tiefebene. Sopron, p 442Google Scholar
  61. Székely B, Reinecker J, Dunkl I, Frisch W, Kuhlemann J (2002) Neotectonic movements and their geomorphic response as reflected in surface parameters and stress patterns in the Eastern Alps. EGU Stephan Mueller Spec Publ Series 3:149–166Google Scholar
  62. Szentes F (1943) Aszód távolabbi környékének földtani viszonyai (Geology of the vicinity of Aszód town: in Hungarian). Magyar Tájak Földtani Leírása (Geological description of Hungarian landscapes), Budapest, p 156Google Scholar
  63. Timár G (2003) Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Sci Rev 22:2199–2207CrossRefGoogle Scholar
  64. Timár G, Molnár G, Pásztor Sz (2002) The Molodensky-Badekas (3–parameters) datum transformation between the WGS84 and the Hungarian Datum 1972 for practical use (in Hungarian with English summary). Geodézia és Kartográfia 54(1):11–16Google Scholar
  65. Van Husen D (1978) Die Ostalpen in den Eiszeiten. Verlag der geologische Bundesanstalt, Wien, p 24Google Scholar
  66. VITUKI (2002) Vízrajzi évkönyv 2002 (Yearbook of the Hungarian Hydrological Research Institute: in Hungarian), BudapestGoogle Scholar
  67. Willis KJ, Kleczkowski A, Briggs KM, Gilligan CA (1999) The role of sub-Milankovitch climatic forcing in the initiation of the Northern Hemisphere glaciation. Science 285(5427):568–571CrossRefPubMedGoogle Scholar
  68. Zelenka T (1960) Kőzettani és földtani vizsgálatok a Dunazug-hegység DNy-i részén (Petrological and geological studies in the SW part of the Dunazug Mountains: in Hungarian). Földtani Közlöny (Bull Hung Geol Soc) 90:83–102Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • D. Karátson
    • 1
  • K. Németh
    • 2
    • 7
  • B. Székely
    • 3
    • 4
  • Zs. Ruszkiczay-Rüdiger
    • 1
    • 5
  • Z. Pécskay
    • 6
  1. 1.Department of Physical GeographyEötvös UniversityBudapestHungary
  2. 2.Hungarian Geological InstituteBudapestHungary
  3. 3.Institut für GeowissenschaftenUniversität TübingenTübingenGermany
  4. 4.Space Research Group, Department of GeophysicsEötvös UniversityBudapestHungary
  5. 5.Netherlands Research Centre for Integrated Solid Earth Science (ISES)AmsterdamThe Netherlands
  6. 6.Institute of Nuclear ResearchHungarian Academy of SciencesDebrecenHungary
  7. 7.Soil and Earth Sciences, Institute of Natural Resources, College of SciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations