International Journal of Earth Sciences

, Volume 96, Issue 1, pp 57–72 | Cite as

Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight)

  • Andres RüggebergEmail author
  • Christian Dullo
  • Boris Dorschel
  • Dierk Hebbeln
Original paper


On- and off-mound sediment cores from Propeller Mound (Hovland Mound province, Porcupine Seabight) were analysed to understand better the evolution of a carbonate mound. The evaluation of benthic foraminiferal assemblages from the off-mound position helps to determine the changes of the environmental controls on Propeller Mound in glacial and interglacial times. Two different assemblages describe the Holocene and Marine Isotope Stage (MIS) 2 and late MIS 3 (∼31 kyr BP). The different assemblages are related to changes in oceanographic conditions, surface productivity and the waxing and waning of the British Irish Ice Sheet (BIIS) during the last glacial stages. The interglacial assemblage is related to a higher supply of organic material and stronger current intensities in water depth of recent coral growth. During the last glaciation the benthic faunas showed high abundances of cassidulinid species, implying cold bottom waters and a reduced availability of organic matter. High sedimentation rates and the domination of Elphidium excavatum point to shelf erosion related to sea-level lowering (∼50 m) and the progradation of the BIIS onto the shelf. A different assemblage described for the on-mound core is dominated by Discanomalina coronata, Gavelinopsis translucens, Planulina ariminensis, Cibicides lobatulus and to a lower degree by Hyrrokkin sarcophaga. These species are only found or show significantly higher relative abundances in on-mound samples and their maximum contribution in the lower part of the record indicates a higher coral growth density on Propeller Mound in an earlier period. They are less abundant during the Holocene, however. This dataset portrays the boundary conditions of the habitable range for the cold-water coral Lophelia pertusa, which dominates the deep-water reefal ecosystem on the upper flanks of Propeller Mound. The growth of this ecosystem occurs during interglacial and interstadial periods, whereas a retreat of corals is documented in the absence of glacial sediments on-mound. Glacial conditions with cold intermediate waters, a weak current regime and high sedimentation rates provide an unfavourable environmental setting for Lophelia corals to grow. A Late Pleistocene decrease is observed in the mound growth for Propeller Mound, which might face its complete burial in the future, as it already happened to the buried mounds of the Magellan Mound province further north.


Carbonate mounds Cold-water corals Mound development Paleo-environment Porcupine Seabight NE Atlantic 



This study is part of the FP5-OMARC project ECOMOUND funded by the EU (Contract no. EVK3-CT-1999-00013). We wish to thank the captains, crews and shipboard parties of RV POSEIDON cruises POS 265 and POS 292, Dr. J. Schönfeld (IFM-GEOMAR, Kiel) and Dr. C. Betzler (University of Hamburg) are acknowledged for their comments and suggestions on an earlier version of this manuscript. Dr. V. Liebetrau (IFM-GEOMAR, Kiel) is acknowledged for performing U/Th dates on the deep-sea coral L. pertusa. S. Schmidt is thanked for providing SEM images of benthic foraminifera from box cores of Propeller Mound. All colleagues of ECOMOUND, GEOMOUND and ACES are gratefully thanked for good co-operation during the three project years.


  1. Altenbach AV (1992) Verbreitungsmuster benthischer Foraminiferen im Arktischen Ozean und in glazialen und interglazialen Sedimenten des Europäischen Nordmeeres. Habilitationsschrift, Christian-Albrechts-Universität, p 95Google Scholar
  2. Altenbach AV, Pflaumann U, Schiebel R, Thies A, Timm S, Trauth M (1999) Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon. J Foraminifer Res 29(3):173–185Google Scholar
  3. Auffret G, Zaragosi S, Dennielou B, Cortijo E, Van Rooij D, Grousset F, Pujol C, Eynaud F, Siegert M (2002) Terrigenous fluxes at the Celtic margin during the last glacial cycle. Mar Geol 188:79–108CrossRefGoogle Scholar
  4. Bond G, Lotti R (1995) Iceberg discharges into the north Atlantic on millennial time scales during the last glaciation. Science 267:1005–1009CrossRefGoogle Scholar
  5. Bowen DQ, Phillips FM, McCabe AM, Knutz PC, Sykes GA (2002) New data for the last glacial maximum in Great Britain and Ireland. Quat Sci Rev 21:89–101CrossRefGoogle Scholar
  6. Brüchert V, Perez ME, Lange CB (2000) Coupled primary production, benthic foraminiferal assemblage, and sulphur diagenesis in organic-rich sediments of the Benguela upwelling system. Mar Geol 163:27–40CrossRefGoogle Scholar
  7. Caralp MH (1985) Quaternary calcareous benthic foraminifers, Leg 80. In: de Graciansky PC, Poag CW et al (eds) Initial reports of the deep sea drilling project. US Government Printing Office, Washington, pp725–755Google Scholar
  8. Caralp MH (1989) Size and morphology of the benthic foraminifer Melonis barleeanum: relationships with marine organic matter. J Foraminifer Res 19(3):235–245Google Scholar
  9. Cheng H, Adkins J, Edwards RL, Boyle EA (2000) U–Th dating of deep-sea corals. Geo Cosmo Acta 64(14):2401–2416CrossRefGoogle Scholar
  10. Coles GP, Ainsworth NR, Whatley RC, Jones RW (1996) Foraminifera and ostracoda from quaternary carbonate mounds associated with gas seepage in the Porcupine Basin, offshore western Ireland. Rev Esp Micropaleontol 28(2):113–151Google Scholar
  11. Collins LS (1989) Relationship of environmental gradients to morphologic variation within Bulimina aculeata and Bulimina marginata, Gulf of Maine area. J Foraminifer Res 19(3):222–234Google Scholar
  12. Conradsen K (1993) Recent benthic foraminifera in the Kattegat, Scandinavia: distributional pattern and controlling parameters. Boreas 22:367–382CrossRefGoogle Scholar
  13. Delibrias G, Taviani M (1985) Dating the death of Mediterranean deep-sea scleractinian corals. Mar Geol 62:175–180CrossRefGoogle Scholar
  14. De Mol B (2002) Development of coral banks in Porcupine Seabight (SW Ireland): a multidisciplinary approach. Ph.D. thesis, University Gent, p 363Google Scholar
  15. De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231CrossRefGoogle Scholar
  16. Dorschel B, Hebbeln D, Rüggeberg A, Dullo C (this volume) Carbonate budget of a cold-water carbonate mound: Propeller Mound, Porcupine Seabight. Int J Earth SciGoogle Scholar
  17. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie LD, Oppo D, Kallel N (1988) Deep water source variations during the last climatic cycle and their impact on global deep water circulation. Paleoceanography 3:343–360Google Scholar
  18. Ellet DJ, Edwards A, Bowers R (1986) The hydrography of the Rockall Channel—an overview. Proc Royal Soc Edinb 88(B):61–81Google Scholar
  19. Ellis BE, Messina AR (1940–1978) Catalogue of Foraminifera. American Museum of Natural History, New York (ISBN 0-913424-34-X)Google Scholar
  20. Eyles N, McCabe AM (1989) The Late Devensian (<22,000 BP) Irish Sea Basin: the sedimentary record of a collapsed ice sheet margin. Quat Sci Rev 8:307–351CrossRefGoogle Scholar
  21. Feyling-Hanssen RW, Joergensen JA, Knudsen KL, Andersen A-LL (1971) Late Quaternary foraminifera from Vendysyyel, Denmark and Sandnes, Norway. Bull Geol Soc Denmark 21(2–3):67–317Google Scholar
  22. Freiwald A (1998) Geobiology of Lophelia pertusa (scleractinian) reef in the North Atlantic. Habilitationsschrift, Department of Geosciences, University of Bremen, p 116Google Scholar
  23. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean margin systems. Springer, Berlin Heidelberg New York, p 495Google Scholar
  24. Freiwald A, Schönfeld J (1996) Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (foraminifera) in a modern deep-water coral reef mound. Mar Micropaleontol 28:199–207CrossRefGoogle Scholar
  25. Freiwald A, Shipboard Party (2002) Cruise Report RV POSEIDON Cruise 292, Reykjavik–Galway, 15 July–4 August 2002Google Scholar
  26. Freiwald A, Dullo C, Shipboard Party (2000) Cruise Report RV POSEIDON Cruise 265, Thorshavn–Galway–Kiel, 13 September–1 October 2000Google Scholar
  27. Games KP (2001) Evidence of shallow gas above the Connemara oil accumulation, Block 26/28, Porcupine Basin. In: Shannon PM, Haughton PDW, Corcoran DV (eds) The petroleum exploration of Ireland’s offshore basins. Geol Soc Spec Publ 188:361–373CrossRefGoogle Scholar
  28. Gooday AJ, Hughes JA (2002) Foraminifera associated with phytodetritus deposits at a bathyal site in the northern Rockall Trough (NE Atlantic): seasonal contrasts and a comparison of stained and dead assemblages. Mar Micropaleontol 46:83–110CrossRefGoogle Scholar
  29. Grousset F, Pujol C, Labeyrie L, Auffret G, Boelaert A (2000) Were the North Atlantic Heinrich events triggered by the behaviour of the European ice sheet? Geology 28(2):123–126CrossRefGoogle Scholar
  30. Hald M, Korsun S (1997) Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. J Foraminifer Res 27:101–122Google Scholar
  31. Hald M, Steinsund PT (1992) Distribution of surface sediment benthic foraminifera in the southwestern Barents Sea. J Foraminifer Res 22(4):347–362Google Scholar
  32. Hald M, Steinsund PI, Dokken T, Korsun S, Polyak L, Aspeli R (1994) Recent and late Quaternary distribution of Elphidium excavatum f. clavatum in the Arctic Seas. Cushman Found Spec Publ 32:141–153Google Scholar
  33. Haug GH, Tiedemann R, Zahn R, Ravelo AC (2001) Role of Panama uplift on oceanic freshwater balance. Geology 29(3):207–210CrossRefGoogle Scholar
  34. Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P (1998) Gas hydrate crystals may help build reefs. Nature 391:648–649CrossRefGoogle Scholar
  35. Heß S (1996) Rezente benthische Foraminiferen in Sedimenten des Schelfes und oberen Kontinentalhanges im Golf von Guinea (Westafrika). Berichte Geologisch-Paläontologisches Institut, Christian-Albrechts-Universität zu Kiel 91:173Google Scholar
  36. Huvenne VAI, Blondel Ph, Henriet J-P (2002) Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar Geol 189(3–4):323–341CrossRefGoogle Scholar
  37. Jones RL, Keen DH (1993) Pleistocene environments in the British Isles. Chapman& Hall, London, p 368Google Scholar
  38. Kaiho K (1994) Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22:719–722CrossRefGoogle Scholar
  39. Kim S-J, Flato GM, Boer GJ (2003) A coupled climate model simulation of the last glacial maximum, Part 2: approach to equilibrium. Clim Dynam 20:635–661Google Scholar
  40. Knutz PC, Austin WEN, Jones EJW (2001) Millennial-scale depositional cycles related to British Ice Sheet variability and North Atlantic paleocirculation since 45 kyr B.P., Barra Fan, UK margin. Paleoceanography 16(1):53–64CrossRefGoogle Scholar
  41. Korsun SA, Polyak LV (1989) Distribution of benthic foraminiferal morphogroups in the Barents Sea. Oceanology 29(5):838–844Google Scholar
  42. Korsun S, Hald M (2000) Seasonal dynamics of benthic foraminifera in a glacially fed fjord of Svalbard, European Arctic. J Foraminifer Res 30:251–271CrossRefGoogle Scholar
  43. Lambeck K, Esat TM, Potter E-K (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206CrossRefPubMedGoogle Scholar
  44. Linke P, Lutze GF (1993) Microhabitat preferences of benthic foraminifera—a static concept or a dynamic adaption to optimise food acquisition?. Mar Micropaleontol 20:215–234CrossRefGoogle Scholar
  45. Loubere P (1991) Deep-sea benthic foraminiferal assemblage response to a surface ocean productivity gradient: a test. Paleoceanography 6(2):193–204CrossRefGoogle Scholar
  46. Lutze GF (1980) Depth distribution of benthic foraminifera on the continental margin off NW Africa. “METEOR” Res Results 32(C):31–80Google Scholar
  47. Lutze GF, Thiel H (1989) Epibenthic foraminifera from elevated microhabitats: Cibicidoides wuellerstorfi and Planulina ariminensis. J Foraminifer Res 19(2):153–158Google Scholar
  48. Mackensen A, Hald M (1988) Cassidulina teretis TAPPAN and C. laevigata d’ORBIGNY: their modern and late quaternary distribution in Northern seas. J Foraminifer Res 18(1):16–24Google Scholar
  49. Mackensen A, Fütterer DK, Grobe H, Schmiedl G (1993) Benthic foraminiferal assemblages from the eastern South Atlantic Polar Front region between 35° and 57°S: distribution, ecology and fossilization potential. Mar Micropaleontol 22:33–69CrossRefGoogle Scholar
  50. Mackensen A, Schmidl G, Harloff J, Giese M (1995) Deep-sea foraminifera in the South Atlantic Ocean: ecology and assemblage generation. Micropaleontology 41(4):342–358CrossRefGoogle Scholar
  51. Manighetti B, McCave IN (1995) Late glacial and Holocene palaeocurrents around Rockall Bank, NE Atlantic Ocean. Paleoceanography 10(3):611–626CrossRefGoogle Scholar
  52. McCartney MS, Mauritzen C (2001) On the origin of the warm inflow to the Nordic Seas. Prog Oceanogr 51:152–214CrossRefGoogle Scholar
  53. Mohn C (2000) Über Wassermassen und Strömungen im Bereich des europäischen Kontinentalrandes westlich von Irland. Ph.D. thesis, University Hamburg, Germany, p 134Google Scholar
  54. Murray JW (1991) Ecology and palaeoecology of benthic foraminifera. Longman Scientific& Technical, EssexGoogle Scholar
  55. Nadeau MJ, Schleicher M, Grootes P, Erlenkeuser H, Gottolong A, Mous DJW, Sarnthein M, Willkomm N (1997) The Leibnitz–Labor AMS facility at the Christian–Albrechts University, Kiel, Germany. Nucl Instrum Methods Phys Res 123:22–30CrossRefGoogle Scholar
  56. Nagy Y (1965) Foraminifera in some bottom samples from shallow waters in Vestspitsbergen. Nor Polarinst Å rb 1963:109–125Google Scholar
  57. New AL, Jia Y, Coulibaly M, Dengg J (2001) On the role of the Azores current in the ventilation of the North Atlantic Ocean. Prog Oceanogr 48:163–194CrossRefGoogle Scholar
  58. Ohkushi K, Thomas E, Kawahata H (2000) Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr. Mar Micropaleontol 38:119–147CrossRefGoogle Scholar
  59. Oki K (1989) Ecological analysis of benthonic foraminifera in Kagoshima Bay, South Kyushu, Japan. South Pacific Stud 10(1):191Google Scholar
  60. Oppo D, Lehman S (1993) Mid-depth circulation of the sub-polar North Atlantic during the last glacial maximum. Science 259:1148–1152CrossRefGoogle Scholar
  61. Pollard RT, Griffiths MJ, Cunningham SA, Read JF, Perez FF, Rios AF (1996) Vivaldi 1991—a study of the formation, circulation and ventilation of Eastern North Atlantic Water. Prog Oceanog 37:167–192CrossRefGoogle Scholar
  62. Rasmussen TL, Thomsen E, van Weering TCE, Labeyrie L (1996) Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58,000 years. Paleoceanography 11(6):757–771CrossRefGoogle Scholar
  63. Rasmussen TL, Thomsen E, Troelstra SR, Kuijpers A, Prins MA (2002a) Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60 000 years. Mar Micropaleontol 47:143–176CrossRefGoogle Scholar
  64. Rasmussen TL, Bäckström D, Heinemeier J, Klitgaard-Kristensen D, Knutz PC, Kuijpers A, Lassen S, Thomsen E, Troelstra SR, van Weering TCE (2002b) The Faroe–Shetland Gateway: late quaternary water mass exchange between the Nordic seas and the northeastern Atlantic. Mar Geol 188:165–192CrossRefGoogle Scholar
  65. Sarnthein M, Jansen W, Weinelt M, Arnold M, Duplessy J-C, Erlenkeuser H, Flatøy A, Johannessen G, Johannessen T, Jung S, Koc N, Labeyrie L, Maslin M, Pflaumann U, Schulz H (1995) Variations in Atlantic surface ocean paleoceanography, 50°–80°N: a time-slice record of the last 30,000 years. Paleoceanography 10(6):1063–1094CrossRefGoogle Scholar
  66. Schiebel R (1992) Rezente benthische Foraminiferen in Sedimenten des Schelfes und oberen Kontinentalhanges im Golf von Guinea (Westafrika). Berichte Geologisch-Paläontologisches Institut, Christian-Albrechts Universität zu Kiel 51179Google Scholar
  67. Schönfeld J (1997) The impact of the Mediterranean outflow water (MOW) on benthic foraminiferal assemblages and surface sediments at the southern Portuguese continental margin. Mar Micropaleontol 29:211–236CrossRefGoogle Scholar
  68. Schönfeld J (2002a) Recent benthic foraminiferal assemblages in deep high-energy environments from the Gulf of Cadiz (Spain). Mar Micropaleontol 44:141–162CrossRefGoogle Scholar
  69. Schönfeld J (2002b) A new benthic foraminiferal proxy for near-bottom current velocities in the Gulf of Cadiz, northeastern Atlantic Ocean. Deep-Sea Res I 49:1853–1875CrossRefGoogle Scholar
  70. Schönfeld J, Zahn R (2000) Late Glacial to Holocene history of the Mediterranean outflow. Evidence from benthic foraminiferal assemblages and stable isotopes at the Portuguese margin. Palaeogeogr Palaeoecl Palaeoecol 159:85–111CrossRefGoogle Scholar
  71. Schrag DP, Adkins JF, McIntyre K, Alexander JL, Hodell DA, Charles CD, McManus JF (2002) The oxygen isotopic composition of seawater during the last glacial maximum. Quat Sci Rev 21:331–342CrossRefGoogle Scholar
  72. Seidenkrantz M-S, Kouwenhoven TJ, Jorissen FJ, Shackleton NJ, van der Zwaan GJ (2000) Benthic foraminifera as indicators of changing Mediterranean-Atlantic water exchange in the late Miocene. Mar Geol 163:387–407CrossRefGoogle Scholar
  73. Shackleton NJ, Hall M, Pate D (1995) Pliocene stable isotope stratigraphy of Site 846. Proc Ocean Drilling Program Sci Results 138:337–357Google Scholar
  74. Steinsund PI, Hald M (1994) Recent calcium carbonate dissolution in the Barents Sea; paleogeographic applications. Mar Geol 117:303–316CrossRefGoogle Scholar
  75. Struck U (1992) Zur Paläo-Ökologie benthischer Foraminiferen im Europäischen Nordmeer während der letzten 600.000 Jahre. Berichte aus dem Sonderforschungsbereich 313, Christian-Albrechts-Universität zu Kiel 38129Google Scholar
  76. Stuiver M, Reimer PJ (1993) Extended 14 C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  77. Stuiver M, Reimer PJ, Braziunas TF (1998) Revised dataset. Radiocarbon 40:1127–1151Google Scholar
  78. Thies A (1991) Die Benthosforaminiferen im Europäischen Nordmeer. Berichte aus dem Sonderforschungsbereich 313, Christian-Albrechts-Universität zu Kiel 3197Google Scholar
  79. Thomas FC, Medioli FS, Scott DB (1990) Holocene and latest Wisconsinan benthic foraminiferal assemblages and paleocirculation history, Lower Scotian slope and rise. J Foraminifer Res 20(3):212–245CrossRefGoogle Scholar
  80. Thomas E, Booth L, Maslin M, Shackleton NJ (1995) Northeastern Atlantic benthic foraminifera during the last 45,000 years: changes in productivity seen from the bottom up. Paleoceanography 10(3):545–562CrossRefGoogle Scholar
  81. Timm S (1992) Rezente Tiefsee-Benthosforaminiferen aus Oberflächensedimenten des Golfes von Guinea (Westafrika)—Taxonomie, Verbreitung, Ökologie und Korngrößenfraktionen. Berichte Geologische-Paläontologisches Institut Christian-Albrechts-Universität zu Kiel 59192Google Scholar
  82. Veum T, Jansen E, Arnold M, Beyer I, Duplessy J-C (1992) Water mass exchange between the North Atlantic and the Norwegian Sea during the past 28,000 years. Nature 356:783–785CrossRefGoogle Scholar
  83. Voelker AHL, Sarnthein M, Grootes PM, Erlenkeuser H, Laj C, Mazaud A, Nadeau M-J, Schleicher M (1998) Correlation of marine 14 C ages from the Nordic Seas with the GISP2 isotope record: implications for radiocarbon calibration beyond 25 ka BP. Radiocarbon 40(1,2):517–534Google Scholar
  84. Weston JF (1985) Comparison between recent benthic foraminiferal faunas of the Porcupine Seabight and Western Approaches Continental Slope. J Micropaleontol 4(2):165–183Google Scholar
  85. White M (2001) Hydrography and physical dynamics at the NE Atlantic Margin that influence the Deep Water Cold Coral Reef Ecosystem, Department of Oceanography, NUI, GalwayGoogle Scholar
  86. White M (this volume) The hydrography of the Porcupine Bank and Sea Bight and associated carbonate mounds. Int J Earth SciGoogle Scholar
  87. Zimmermann HB (1982) Fine-grained sediment distribution in the Late Pleistocene/Holocene North Atlantic. Bull Inst Geol Bassin Aquitaine 31: 337–357Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Andres Rüggeberg
    • 1
    Email author
  • Christian Dullo
    • 1
  • Boris Dorschel
    • 2
  • Dierk Hebbeln
    • 2
  1. 1.IFM-GEOMARLeibniz-Institute of Marine SciencesKielGermany
  2. 2.Department of GeologyUniversity of BremenBremenGermany

Personalised recommendations