International Journal of Earth Sciences

, Volume 94, Issue 5–6, pp 941–955 | Cite as

Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands

  • Zsolt SchléderEmail author
  • János L. Urai
Original paper


The microstructure of halite from the subhorizontal, bedded Main Röt Evaporite Member at Hengelo, The Netherlands (AKZO well 382, depth interval of 420–460 m), was studied by transmitted and reflected light microscopy of gamma-irradiation decorated samples. Primary microstructures compare favourably with those found in recent ephemeral salt pans. Large, blocky, fluid-inclusion-poor halite grains and elongated chevrons are interpreted to have formed in the saline lake stage, while void-filling clear halite is interpreted to have formed during the desiccation stage of the salt pan. In addition, in all layers the grains are rich in deformation-related substructures such as slip bands and subgrains indicating strains of a few percent. The study of gamma-irradiation decorated thin sections shows that the main recrystallization mechanism is grain boundary migration. Grain boundary migration removes primary fluid inclusions and produces clear, strain-free new grains. Differential stresses as determined by subgrain size piezometry were 0.45–0.97 MPa. The deformation of the salt layers is probably related to Cretaceous inversion in the area.


Hengelo (The Netherlands) Triassic bedded rock salt Synsedimentary structures Deformation microstructures Recrystallization 



The authors thank Wim Paar (Akzo Nobel company) for providing the salt core samples, Manfred Thomé at the Jülich Forschungszentrum for carrying out the gamma-irradiation and H. W. den Hartog (University of Groningen) for helpful discussion on gamma-irradiation. This work was performed as a part of the SPP 1135 project (nr. UR 64/5-1-2), and was financed by the DFG (Deutsche Forschungsgemeinschaft). The manuscript benefited from thorough reviews by Timothy Diggs and Chris Spiers.


  1. Arthurton RS (1973) Experimentally produced halite compared with Triassic layered halite-rock from Chesire, England. Sedimentology 20:145–160CrossRefGoogle Scholar
  2. Benison KC, Goldstein RH (2001) Evaporites and siliciclastics of the Permian Nippewalla Group of Kansas, USA: a case for non-marine deposition in saline lakes and saline pans. Sedimentology 48:165–188CrossRefGoogle Scholar
  3. Bestmann M, Piazolo S, Spiers CJ, Prior DJ (2005) Microstructural evolution during initial stages of static recovery and recrystallization: new insights from in-situ heating experiments combined with electron backscatter diffraction analysis. J Struct Geol 27(3):447–457CrossRefGoogle Scholar
  4. Carter NL, Horseman ST, Russell JE, Handin J (1993) Rheology of rocksalt. J Struct Geol 15(9–10):1257–1271CrossRefGoogle Scholar
  5. Casas E, Lowenstein TK (1989) Diagenesis of saline pan halite: comparison of petrographic features of modern, quaternary and permian halites. J Sediment Petrol 59(5):724–739Google Scholar
  6. Dellwig LF (1955) Origin of the salina salt of Michigan. J Sediment Res 25(2):83–110Google Scholar
  7. Doornenbal H, Duin EJT, de Haan H (2002) Actualisering van de bestaande geologische kaarten van de concessie Adolf van Nassau en van de concessie Twenthe-Rijn, Buurse en Uitbreiding Twenthe-Rijn. TNO report: NITG 02–194-C, Nederlands Instituut voor Toegepaste Geowetenschappen TNOGoogle Scholar
  8. Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172:235–253CrossRefGoogle Scholar
  9. Franssen RCMW (1993) Rheology of synthetic rocksalt with emphasis on the influence of deformation history and geometry on the flow behaviour. PhD Thesis, Rijksuniversiteit UtrechtGoogle Scholar
  10. Garcia Celma A, Donker H (eds) (1996) The effect of gamma radiation in salt, EUR-Report 16743ENGoogle Scholar
  11. Geluk MC, Duin EJT (1997) Kartering Twenthe-Rijn, Uitbreiding Twenthe-Rijn en Buurse Concessie. TNO report: NITG 97–69-C, Nederlands Instituut voor Toegepaste Geowetenschappen TNOGoogle Scholar
  12. Geluk MC, Röhling H-G (1997) High-resolution sequence stratigraphy of the Lower Triassic “Buntsandstein” in The Netherlands and northwestern Germany. Geologie en Mijnbouw 76:227–246Google Scholar
  13. Guillopé M, Poirier JP (1979) Dynamic recrystallization during creep of single crystalline halite: an experimental study. J Geophys Res 4:5557–5567CrossRefGoogle Scholar
  14. Haenel R (1980) Atlas of subsurface temperatures in the European community. Commission European Community, BrusselsGoogle Scholar
  15. Handford RC (1990) Halite depositional facies in a solar salt pond: a key to interpreting physical energy and water depth in ancient deposits? Geology 18:691–694CrossRefGoogle Scholar
  16. Hardie LA, Lowenstein TK, Spencer RJ (1983) The problem of distinguishing between primary and secondary features in evaporites. In: Schreiber BC, Harner HL (eds) 6th symposium on salt. Salt Institute, Alexandria, pp 11–39Google Scholar
  17. Harsveldt HM (1980) Salt resources in The Netherlands as surveyed by AKZO. In: Coogan AH, Hauber L (eds) 5th symposium on salt. Hamburg, Germany, pp 65–81Google Scholar
  18. Hunsche U, Schulze O, Walter F, Plischke I (2003) Projekt Gorleben. Thermomechanisches Verhalten von Salzgestein. 9G2138110000, BGR, HannoverGoogle Scholar
  19. Jackson MPA (1985) Natural strain in diapiric and glacial rock salt, with emphasis on Oakwood Dome, East Texas. Rep Invest 143:73Google Scholar
  20. de Jager J (2003) Inverted basins in The Netherlands, similarities and differences. Geologie en Mijnbouw 82(4):355–366Google Scholar
  21. Joffé A (1928) The physics of crystals. McGraw-Hill, New YorkGoogle Scholar
  22. Kovalevych V, Peryt TM, Beer W, Geluk M, Halas S (2002) Geochemistry of Early Triassic seawater as indicated by study of the Rot halite in The Netherlands, Germany, and Poland. Chem Geol 182(2–4):549–563CrossRefGoogle Scholar
  23. van Lange MWP (1994) The development, geology and lithology of the Central-Northern part of the Hengelo rock salt solution mining area and its geotechnical characterisation. Mem Cent Eng Geol Netherlands 126:77Google Scholar
  24. Lowenstein TK, Hardie LA (1985) Criteria for the recognition of salt-pan evaporites. Sedimentology 32:627–644CrossRefGoogle Scholar
  25. NITG (1998) Geological atlas of the subsurface of The Netherlands, explanation to map sheet X: Almelo-Winterswijk. Nederlands Instituut voor Toegepaste Geowetenschappen TNO, Haarlem, p 143Google Scholar
  26. Nollet S, Urai JL, Bons PD, Hilgers C (2005) Numerical simulations of polycrystal growth in veins. J Struct Geol 27(2):217–230CrossRefGoogle Scholar
  27. van Opbroek G, den Hartog HW (1985) Radiation damage of NaCl: dose rate effects. J Phys C Solid State Phys 18:257–268CrossRefGoogle Scholar
  28. Peach C, Spiers CJ, Trimby PW (2001) Effect of confining pressure on dilatation, recrystallization, and flow of rock salt at 150°C. J Geophys Res 106:13315–13328CrossRefGoogle Scholar
  29. Pfeifle TW, Vogt TJ, Brekken GA (1995) Correlation of chemical, mineralogic and physical characteristics of Gulf Coast dome salt to deformation and strength properties Contract No 1–92. RESPEC Inc, Rapid CityGoogle Scholar
  30. Przibram K (1954) Irradiation colours in minerals. Endeavour 13(49):37–41Google Scholar
  31. RGD (1993) Geologische Kaart van Nederland 1:50 000, Blad Almelo Oost/Denekamp (28O/29). Rijks Geologische Dienst, HaarlemGoogle Scholar
  32. Roedder E (1984) The fluids in salt. Am Mineral 69:413–439Google Scholar
  33. Schenk O, Urai JL (2004) Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine. Contrib Mineral Petrol 146(6):671–682CrossRefGoogle Scholar
  34. Senseny PE, Hansen FD, Russell JE, Carter NL, Handin J (1992) Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci Geomech Abstr 29(4):363–378CrossRefGoogle Scholar
  35. Shearman DJ (1970) Recent halite rock, Baja California, Mexico. Trans Min Metall 79B:155–162Google Scholar
  36. Spiers CJ et al (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics. Geol Soc Lond Spec Publ, London, pp 215–227Google Scholar
  37. Spiers CJ, Carter NL (1996) Microphysics of rocksalt flow in nature. In: 4th conference on the mechanical behaviour of salt. The Pennsylvania State UniversityGoogle Scholar
  38. Urai JL (1983) Deformation of wet salt rocks. PhD Thesis, Universiteit Utrecht, p 221Google Scholar
  39. Urai JL, Spiers CJ, Peach CJ, Zwart HJ (1985) A laboratory investigation into the interaction of recrystallization and radiation damage effects in polycrystalline salt rocks. HPT Laboratorium Insititut voor Aardwetenschappen, UtrechtGoogle Scholar
  40. Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rocksalt by water during long term creep. Nature 324:554–557CrossRefGoogle Scholar
  41. Urai JL, Spiers CJ, Peach C, Franssen RCMW, Liezenberg JL (1987) Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geologie en Mijnbouw 66:165–176Google Scholar
  42. Wardlaw NC, Schwerdtner WM (1966) Halite-Anhydrite seasonal layers in the Middle Devonian Prairie Evaporite Formation, Saskachewan, Canada. Geol Soc Am Bull 77:331–342CrossRefGoogle Scholar
  43. Wardlaw NC, Watson DW (1966) Middle Devonian salt formations and their bromide content, Elk Point Area, Canada. Can J Earth Sci 3:263–275Google Scholar
  44. Warren J (1999) Evaporites—their evolution and economics. Blackwell, Oxford, p 437Google Scholar
  45. Wawersik WR, Zeuch DH (1986) Modeling and mechanistic interpretation of creep of rock salt below 200°C. Tectonophysics 121:125–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Geologie-Endogene DynamikRWTH AachenAachenGermany

Personalised recommendations