International Journal of Earth Sciences

, Volume 94, Issue 5–6, pp 1056–1069 | Cite as

Fluid-dynamics driving saline water in the North East German Basin

  • Fabien Magri
  • Ulf Bayer
  • Christoph Jahnke
  • V. Clausnitzer
  • H. J. Diersch
  • J. Fuhrman
  • P. Möller
  • A. Pekdeger
  • M. Tesmer
  • H. J. Voigt
Original paper

Abstract

In several areas of the North German Basin, saline water comes close to, or even reaches the surface. Available data from wells indicate that brine stratification is under unstable conditions in the deeper underground. In order to analyse the possible transport mechanisms, 3D thermohaline simulations have been carried out for two different scenarios. The 3D regional model (230×330 km) indicates that salty water is driven to the surface by hydrostatical forces from the surrounding highlands. In addition, a smaller scale model (10×10 km) has been constructed with a grid resolution accounting for possible convective flow. The results indicate that convective flow may play a dominant role in areas with minor topography. In summary, the complex pattern of near surface occurrences of saline water probably results from the interaction of hydrostatic and thermal forces.

Keywords

3D thermohaline modelling Regional flow Convective flow Salt springs and pots Sedimentary basins North German Basin 

References

  1. Bayer U, Magri F, Clausnitzer V, Jahnke C, Fuhramnn J, Moller P, Pekdeger A, Tesmer M, Voigt H (2005) Deep reaching fluid flow close to convective instability in the NE German Basin. Techtonophysics (in press)Google Scholar
  2. Bear J (1991) Modelling transport phenomena in porous media. Convect Heat Mass Transfer Porous Media 7:69Google Scholar
  3. Grube A, Wichman K, Hahn J, Nachtigall K (2000) Geogene Grundwasserversalzung in den Porengrundwasserleitern Norddeutschlands und ihre Bedeutung für die Wasserwirtschaft. Technologiezentrum Wasser Karlsruhe (TZW), Karlsruhe, pp 1–203Google Scholar
  4. Hurtig (1994) Land Brandenburg. Bohrungen mit kontinuierlichen Bohrlochmessungen. Bohrungen mit Maximaltemperaturen. Unveröff. Unterlagen bereitgestellt durch das Landesamt für Geowissenschaften und Rohstoffe BrandenburgGoogle Scholar
  5. Kolditz O, Ratke R, Diersch H J G, Zielke W (1998) Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv Water Resources 21:27–46CrossRefGoogle Scholar
  6. Magri F (2004) Derivation of the coefficients of thermal expansion and compressibility for use in FEFLOW. WASY White papers III:13–23Google Scholar
  7. Nield DA (1968) Onset of thermohaline convection in a porous medium. Water Resources Res 4:553–560CrossRefGoogle Scholar
  8. Nield D A (1974) Comments on Effect of solute dispersion on thermal convection in a porous medium layer. Water Resources Res 10:889CrossRefGoogle Scholar
  9. Nield DA, Bejan A (1999) Convection in porous media. Springer, Berlin Heidelberg New York, pp 1–546Google Scholar
  10. Oldenburg CM, Pruess K (1998) Layered thermohaline convection in hypersaline geothermal systems. Transport Porous Media 33: 29–63CrossRefGoogle Scholar
  11. Oldenburg CM, Pruess K (1999) Plume separation by transient thermohaline convection in porous media. Geophy Res Lett 26:2997–3000CrossRefGoogle Scholar
  12. Person M, Raffensperger JP, Ge S, Garven G (1996) Basin-scale hydrogeologic modeling. Rev Geophys 34:61–87CrossRefGoogle Scholar
  13. Ranganathan V, Hanor JS (1988) Density-driven groundwater flow near salt domes. Chem Geol 74:173–188CrossRefGoogle Scholar
  14. Rosenberg ND, Spera FJ (1990) Role of anisotropic and/or layered permeability in hydrothermal convection. Geophys Res Lett 17:235–238CrossRefGoogle Scholar
  15. Rosenberg ND, Spera FJ (1992a) Convection in porous media with thermal and chimical buoyancy: a comparison of two models for solute dispersion. Chaotic processes in the geological science IMA volume in mathematics and its applications, pp 319–333Google Scholar
  16. Rosenberg ND, Spera FJ (1992b) Thermohaline convection in a porous medium heated from below. Int J Heat Mass Transfer 35:1261–1273CrossRefGoogle Scholar
  17. Rubin H (1975) Effect of solute dispersion on thermal convection in a porous medium layer. Water Resources Res 11:154–158CrossRefGoogle Scholar
  18. Sarkar A, Nunn JA, Hanor JS (1995) Free thermohaline convection beneath allochthonous salt sheets: an agent for salt dissolution and fluid flow in Gulf Coast sediments. J Geophys Res 100:18085–18092CrossRefGoogle Scholar
  19. Scheck M (1997) Dreidimensional Strukturmodellierung des Nordostdeutschen Beckens unter Einbeziehung von Krustenmodellen Scientific Technical Report STR97/10. Geoforschungszentrum, PotsdamGoogle Scholar
  20. Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169CrossRefGoogle Scholar
  21. Schirrmeister W (1996) Aus der Literatur überlieferte Angaben über natürliche Salzwasseraustritte an der Grundwasseroberfläche/Geländeoberfläche in Brandenburg. Brandenburgische Geowissenschaftliche Beiträge 3:94–96Google Scholar
  22. Sorey ML (1976) Numerical modeling of liquid geothermal systems. USGS Open File Report 75–613Google Scholar
  23. Straus JM, Schubert G (1977) Thermal convection of water in a porous medium: effects of temperature and pressure dependent thermodynamic and transport properties. J Geophys Res 82:325–333CrossRefGoogle Scholar
  24. Wood JR, Hewett TA (1982) Fluid convection and mass transfer in porous sandstones - a theoretical model. Geochim Cosmochim Acta 46:1707–1713CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Fabien Magri
    • 1
  • Ulf Bayer
    • 1
  • Christoph Jahnke
    • 4
  • V. Clausnitzer
    • 2
  • H. J. Diersch
    • 2
  • J. Fuhrman
    • 3
  • P. Möller
    • 1
  • A. Pekdeger
    • 5
  • M. Tesmer
    • 5
  • H. J. Voigt
    • 4
  1. 1.Geoforschungszentrum Potsdam 4.3PotsdamGermany
  2. 2.WASY GmbHBerlinGermany
  3. 3.Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
  4. 4.Environmental GeologyBrandenburg University of Technology Cottbus (BTU)CottbusGermany
  5. 5.Institut of Geological Sciences, Geochemistry Hydrology, MineralogyFreie Universität BerlinBerlinGermany

Personalised recommendations