International Journal of Earth Sciences

, Volume 96, Issue 1, pp 73–83 | Cite as

Carbonate budget of a cold-water coral carbonate mound: Propeller Mound, Porcupine Seabight

  • Boris Dorschel
  • Dierk Hebbeln
  • Andres Rüggeberg
  • Christian Dullo
Original paper

Abstract

High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name ‘carbonate mound’. Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.

Notes

Acknowledgements

We would like to thank M. Segl for stable isotope analyses and V. Liebetrau for U/Th datings. We also acknowledge N. Nowald for his help with the optical analyses. This study was part of the EU FP5-OMARC project ECOMOUND contract no. EVK3-CT-1999-00013 and was supported by the Deutsche Forschungsgemeinschaft as part of the DFG Research Center Ocean Margins of the University of Bremen; No. RCOM0283.

References

  1. De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188(1–2):19–31CrossRefGoogle Scholar
  2. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett DSM, Hebbeln D, Jørgensen BB, van Weering TCE (eds) Ocean margin systems. hanse conference report. Springer, Berlin, Heidelberg, New York pp36–85Google Scholar
  3. Freiwald A, Dullo C, Shipboard scientific crew (2000) Cruise Report RV POSEIDON Cruise 265Google Scholar
  4. Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West-Finmark, northern Norway. In: James NP, Clarke JAD (eds) Cool-Water Carbonates. SEPM Spec Publ, pp14–61Google Scholar
  5. Freiwald A, Shipboard scientific crew (2002) Cruise Report of the RV POSEIDON cruise 292 Reykjavik - GalwayGoogle Scholar
  6. Grousset F, Pujol C, Labeyrie L, Auffret G, Boelaert A (2000) Were the North Atlantic Heinrich events triggered by the behaviour of the European ice sheets? Geology 28(2):12–26CrossRefGoogle Scholar
  7. Henriet JP, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P, BELGICA 97 Shipboard scientific crew (1998) Gas hydrate crystals may help build reefs. Nature 391(6668):64–49CrossRefGoogle Scholar
  8. Hovland M, Croker PF, Martin M (1994) Fault-associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia. Mar Petrol Geol 11(2):23–46CrossRefGoogle Scholar
  9. Huvenne VAI, Blondel P, Henriet JP (2002) Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight. Mar Geol 189(3–4):32–41CrossRefGoogle Scholar
  10. Jansen JHF, Van der Gaast SJ, Koster B, Vaars AJ (1998) CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar Geol 151(1–4):14–53CrossRefGoogle Scholar
  11. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC Jr, Shackelton NJ (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000-year chronostratigraphy. Quater Res 27(1):1–29CrossRefGoogle Scholar
  12. Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of coral Lophelia pertusa (L.) at 64 degrees on the Norwegian shelf: structure and associated megafauna. Sarsia 80(2):14–58Google Scholar
  13. Nadeau MJ, Schleicher M, Grootes P, Erlenkeuser H, Gottolong A, Mous DJW, Sarnthein M, Willkomm N (1997) The Leibnitz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nucl Instrum Methods Phys Res 123:22–30CrossRefGoogle Scholar
  14. Somoza L, Gardner JN, Díaz-del-Río V, Váquez JT, Pinheiro LM, Hermández-Molina FJ, TASYO/ANASTASY A shipboard scientific parties (2002) Numeros methane gas-related sea floor structures identified in Gulf of Cádiz. EOS 83(47):541–549Google Scholar
  15. Stuiver M, Reimer PJ (1993) Extended 14C data-base and revised calib. 3.0 C-14 age calibration program. Radiocarbon 35:21–30Google Scholar
  16. Stuiver M, Reimer PJ, Braziunas TF (1998) Revised dataset. Radiocarbon 40:112–151Google Scholar
  17. van Andel TH, Heath GR, Moore TC (1975) Cenozoic history and paleoeanography of the central equatorial Pacific Ocean. Geol Soc Am Mem 143:134Google Scholar
  18. van Rooij D, De Mol B, Huvenne V, Ivanov M, Henriet JP (2003) Seismic evidences of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol 195(1–4):31–53CrossRefGoogle Scholar
  19. Voelker AHL, Sarnthein M, Grootes PM, Erlenkeuser H, Laj C, Mazaud A, Nadeau MJ, Schleicher M (1998) Radiocarbon 40:517–534Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Boris Dorschel
    • 1
  • Dierk Hebbeln
    • 2
  • Andres Rüggeberg
    • 3
  • Christian Dullo
    • 3
  1. 1.RCOM Research Center Ocean MarginsBremenGermany
  2. 2.MARUM Center for Marine Environmental SciencesBremenGermany
  3. 3.IFM-GEOMAR Research Center for Marine GeosciencesKielGermany

Personalised recommendations