International Journal of Earth Sciences

, Volume 94, Issue 5–6, pp 1039–1055 | Cite as

Sealing of fluid pathways in overpressure cells: a case study from the Buntsandstein in the Lower Saxony Basin (NW Germany)

  • Sofie Nollet
  • Christoph Hilgers
  • Janos Urai
Original paper


We studied veins in the Triassic Buntsandstein of the Lower Saxony Basin (NW Germany) with the aim of quantifying the evolution of in-situ stress, fluids and material transport. Different generations of veins are observed. The first generation formed in weakly consolidated rocks without a significant increase in fracture permeability and was filled syntectonically with fibrous calcite and blocky to elongate-blocky quartz. The stable isotopic signature (δ18O and δ13C) indicates that the calcite veins precipitated from connate water at temperatures of 55–122°C. The second vein generation was syntectonically filled with blocky anhydrite, which grew in open fractures. Fluid inclusions indicate that the anhydrite veins precipitated at a minimum temperature of 150°C from hypersaline brines. Based on δ34S measurements, the source of the sulphate was found in the underlying Zechstein evaporites. The macro- and microstructures indicate that all veins were formed during subsidence and that the anhydrite veins were formed under conditions of overpressure, generated by inflation rather than non-equilibrium compaction. The large amount of fluids which are formed by the dehydrating gypsum in the underlying Zechstein and are released into the Buntsandstein during progressive burial form a likely source of overpressures and the anhydrite forming fluids.


Veins Lower Saxony Basin overpressure 



We thank Dr. Jentsch (EMPG) for access to Buntsandstein cores. Werner Kraus is acknowledged for the preparation of thin sections and the fluid inclusion wafers. Philippe Muchez (K.U.Leuven) is thanked for the use of the Linkham stage and discussions on the fluid inclusions. We are very thankful to Prof. Strauss (Münster) for the analyses of the S isotopes and to Dr. Joachimski (Erlangen) for the δ18O and δ13C isotopes. Comments by Anne-Marie Bouiller and an anonymous reviewer significantly improved the manuscript. This project is funded by the DFG (Hi 816/1–2) and is part of the SPP 1135 “Dynamics of Sedimentary Systems under varying Stress Conditions by Example of the Central European Basin System”.


  1. Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23CrossRefGoogle Scholar
  2. Baldschuhn R, Frisch U, Kochel F (1998) Der Salzkeil, ein strukturelles Requisit der saxonischen Tektonik. Z. deutschen geologischen Gesellschaft 149(1):59–69Google Scholar
  3. Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor-Strukturen Strukturentwicklung Palaeogeographie, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 88Google Scholar
  4. Bayer U, Scheck M, Rabbel W, Krawczyk CM, Götze H-J, Stiller M, Beilecke T, Marotta AM, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE German Basin. Tectonophysics 314:285–307CrossRefGoogle Scholar
  5. Bekins B, McCaffrey AM, Dreiss SJ (1994) Influence of kinetics on the smectite to illite transition in the Barbados accretionary prism. J Geophy Res 99(B9):18147–18158CrossRefGoogle Scholar
  6. Bjørlykke K, Ramm M, Saigal GC (1989) Sandstone diagenesis and porosity modification during basin evolution. Geol Runds 78:243–268CrossRefGoogle Scholar
  7. Blount CW, Dickson FW (1969) The solubility of anhydrite (CaSO4) in NaCl-H2O from 100 to 450°C and 1 to 1000 bars. Geochim Cosmochim Acta 33:227–245CrossRefGoogle Scholar
  8. Bons PD (2000) The formation of veins and their microstructures. In: Jessell MW, Urai JL (eds) Stress, strain and structure, a volume in honour of W.D. Means. J Virt Explor 2Google Scholar
  9. Bons PD, Jessell MW (1997) Experimental simulation of the formation of fibrous veins by localised dissolution-precipitation creep. Mineral Mag 61(1):53–63CrossRefGoogle Scholar
  10. Borchert H, Muir RO (1964) Salt deposits. Van Nostrand Company, Ltd., London, p 338Google Scholar
  11. Bredehoeft JD, Wesley JB, Fouch TD (1994) Simulations of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta Basin, Utah. AAPG Bull 78(11):1729–1747Google Scholar
  12. Brink H-J (1984) Die Salzstockentwicklung in Nordwestdeutschland. Geowissenschaften in unserer Zeit 2(5):160–166Google Scholar
  13. Brink HJ, Dürschner H, Trappe H (1992) Some aspects of the late and post-Variscan development of the Northwestern German Basin. Tectonophysics 207:65–95CrossRefGoogle Scholar
  14. Bruce CH (1984) Smectite dehydration-its relation to structural development and hydrocarbon accumulation in Northern Gulf of Mexico Basin. AAPG Bull 68(6):673–683Google Scholar
  15. Burrus J (1998) Overpressure models for clastic rocks, their relation to hydrocarbon expulsion: a critical reevaluation. In: Law BE, Ulmishek GF, Slavin VI (eds) Abnormal pressures in hydrocarbon environments: AAPG Memoir 70, pp 35–63Google Scholar
  16. Burruss RC (1987) Diagenetic palaeotemperatures from aqueous fluid inclusions: re-equilibration of inclusions in carbonate cements by burial heating. Mineral Maga 51:477–481CrossRefGoogle Scholar
  17. Carter NL, Horseman ST, Russell JE, Handin J (1993) Rheology of rocksalt. J Struct Geol 15(9/10):1257–1271CrossRefGoogle Scholar
  18. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  19. Colten-Bradley VA (1987) Role of pressure in smectite-dehydration-effects on geopressure and smectite-to-illite transformation. AAPG Bull 71:1414–1427Google Scholar
  20. de Jager J (2003) Inverted basins in the Netherlands, similarities and differences. Netherlands Journal of Geosciences/Geologie en Mijnbouw 82(4):355–366Google Scholar
  21. Durney DW, Ramsay JG (1973) Incremental strains measured by syntectonic crystal growth. In: de Jong KA, Scholten R (eds) Gravity and tectonics. Wiley, New York, pp 67–96Google Scholar
  22. Faure G (1998) Principles and applications of geochemistry: a comprehensive textbook for geology students. Prentice-Hall, London, p 600Google Scholar
  23. Freyer D, Voigt W (2004) The measurement of sulfate mineral solubilities in the Na-K-Ca-Cl-SO4-H2O system at temperatures of 100, 150 and 200°C. Geochim Cosmochim Acta 68:307–318CrossRefGoogle Scholar
  24. Gaupp R, Matter A, Platt J, Ramseyer K, Walzebuck J (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, Northwest Germany. AAPG Bull 77(7):1111–1128Google Scholar
  25. Goldstein R (1986) Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement. Geology 14:792–795CrossRefGoogle Scholar
  26. Gross MR, Engelder T, Poulson SR (1992) Veins in the Lockport dolostone: evidence for an acadian fluid circulation system. Geology 20:971–974CrossRefGoogle Scholar
  27. Hardie LA (1967) The gypsum-anhydrite equilibrium at one atmosphere pressure. Amer Mineral 52:171–200Google Scholar
  28. Harwood GM, Coleman ML (1983) Isotopic evidence for UK Upper Permian mineralization by bacterial reduction of evaporites. Nature 301:597–599CrossRefGoogle Scholar
  29. Herrmann A, Hinze C, Hofrichter E, Stein V (1968) Salzbewegungen und Deckgebirge am Nordostrand der Sollingscholle (Ahlsburg). Geologisches Jahrbuch, Beihefte 85:147–164Google Scholar
  30. Hilgers C, Koehn D, Bons PD, Urai JL (2001) Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins. J Struct Geol 23:873–885CrossRefGoogle Scholar
  31. Hilgers C, Urai JL (2002) Microstructural observations on natural syntectonic fibrous veins: implications for the growth process. Tectonophysics 352:257–274CrossRefGoogle Scholar
  32. Holliday DW (1970) The petrology of secondary gypsum rocks: a review. J Sediment Petrol 40(2):734–744Google Scholar
  33. Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting. Bull Geol Soc Am 70:115–166CrossRefGoogle Scholar
  34. Ingebritsen SE, Sanford WE (1998) Groundwater flow in geologic processes. Cambridge University Press, Cambridge, p 341Google Scholar
  35. Ingram GM, Urai JL (1999) Top-seal leakage through faults and fractures: the role of mudrock properties. In: Aplin AC, Fleet AJ, MacQuaker JHS (eds) Muds and mudstones: Physical and Fluid Flow Properties. Geological Society, London, pp 124–135Google Scholar
  36. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213CrossRefGoogle Scholar
  37. Jaritz W (1980) Einige Aspekte der Entwicklungsgeschichte der nordwestdeutschen Salzstöcke. Geowissenschaftliche Aspekte der Endlagerung radioaktiver Abfaelle 131(2):387–408Google Scholar
  38. Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286CrossRefGoogle Scholar
  39. Kockel F (2003) Inversion structures in Central Europe - Expressions and reasons, an open discussion. Netherlands J Geosci Geol Mijnbouw 82(4):367–382Google Scholar
  40. Kossow D, Krawczyk CM (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Marine Petrol Geol 19:601–618CrossRefGoogle Scholar
  41. Kovalevych V, Peryt TM, Beer W, Geluk MC, Halas S (2002) Geochemistry of Early Triassic seawater as indicated by study of the Röt halite in the Netherlands, Germany, and Poland. Chem Geol 182:549–563CrossRefGoogle Scholar
  42. Kramm U, Wedepohl KH (1991) The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chem Geol 90:253–262CrossRefGoogle Scholar
  43. Laier T, Nielsen BL (1989) Cementing halite in Triassic Bunter Sandstone (Tonder, southwest Denmark) as a result of hyperfiltration of brines. Chem Geol 76:353–363CrossRefGoogle Scholar
  44. Law BE, Spencer CW (1998) Abnormal pressure in hydrocarbon environments. In: Law BE, Ulmishek GF, Slavin VI (eds) Abnormal pressures in hydrocarbon environment, vol 70. AAPG MEMOIR, pp 1–11Google Scholar
  45. Lewis S, Holness M (1996) Equilibrium halite–H2O dihedral angles: high rock-salt permeability in the shallow crust? Geology 24(5):431–434CrossRefGoogle Scholar
  46. Machel HG (1987) Some aspects of diagenetic sulphate-hydrocarbon redox reactions. In: Marshall JD (ed) Diagenesis of sedimentary sequences, vol 36. Geological Society Special Publication, London, pp 15–28Google Scholar
  47. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sedimen Geol 140(1–2):143–175CrossRefGoogle Scholar
  48. Michelsen O, Clausen OR (2002) Detailed stratigraphic subdivision and regional correlation of the southern Danish Triassic succession. Marine Petrole Geol 19:563–587CrossRefGoogle Scholar
  49. Mohr M, Kukla PA, Urai JL, Bresser G, Blei (2005) Multiphase salt tectonic evolution in NW Germany: seismic interpretation and retro-deformation, (this volume)Google Scholar
  50. Möller P, Weise SM, Althaus E, Bach W, Behr HJ, Borchardt R, Braeuer K, Drescher J, Erzinger J, Faber E, Hansen BT, Horn EE, Huenges E, Kaempf H, Kessels W, Kirsten T, Landwehr D, Lodemann M, Machon L, Pekdeger A, Pielow HU, Reutel C, Simon K, Walther J, Weinlich FH, Zimmer M (1997) Paleofluids and recent fluids in the upper continental crust; results from the German Continental Deep-Drilling Program (KTB). J Geophys Res 102(8):18233–18254CrossRefGoogle Scholar
  51. Muchez P, Viaene W, Marshall JD (1991) Origin of shallow burial cements in the Late Viséan of the Campine Basin, Belgium. Sediment Geol 73:257–271CrossRefGoogle Scholar
  52. Muchez P, Marshall JD, Touret JLR, Viaene W (1994) Origin and migration of palaeofluids in the Upper Visean of the Campine Basin, northern Belgium. Sedimentology 41:133–145CrossRefGoogle Scholar
  53. Murray RC (1964) Origin and diagenesis of gypsum and anhydrite. J Sediment Petrol 34(3):512–523Google Scholar
  54. Nollet S, Urai JL, Bons PD, Hilgers C (2005) Numerical simulations of polycrystal growth in veins. J Struct Geol 27(2):217–230CrossRefGoogle Scholar
  55. Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl–CaCl2–H2O: I. The ice liquidus at 1 atm total pressure. Geochim Cosmochim Acta 54:603–610CrossRefGoogle Scholar
  56. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  57. Palciauskas VV, Domenico PA (1989) Fluid pressure in deforming porous rocks. Water Resources Research 25(2):203–213CrossRefGoogle Scholar
  58. Passchier CW, Trouw RAJ (1996) Microtectonics. Springer, Berlin Heidelberg New York, p 289Google Scholar
  59. Peach CJ, Spiers CJ (1996) Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256(1–4):101–128Google Scholar
  60. Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344CrossRefGoogle Scholar
  61. Plumley WJ (1980) Abnormally high fluid pressures: survey of some basic principles. AAPG Bull 64(3):414–423Google Scholar
  62. Popp T, Kern H, Schulze O (2001) Permeation and development of dilatancy in rock salt. In: Cristescu ND, Hardy HR, Simionescu RO (eds) Basic and Applied SaltGoogle Scholar
  63. Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, CambridgeGoogle Scholar
  64. Purvis K, Okkerman JA (1996) Inversion of reservoir quality by early diagenesis: an example from the Triassic Buntsandstein, offshore the Netherlands. In: Rondeel HE, Batjes DAJ, Nieuwenhuijs WH (eds) Geology of gas and oil under the Netherlands. Kluwer, Dordrecht, pp 179–189Google Scholar
  65. Putnis A, Mauthe G (2001) The effect of pore size on cementation in porous rocks. Geofluids 1:37–41CrossRefGoogle Scholar
  66. Ramsay JG, Huber (1983) Techniques in modern structural geology, vol 1: strain analysis. Academic, London, p 307Google Scholar
  67. Reynolds J, Goldstein R (1990) Fluid inclusions in sedimentary rocks: systematics of fluid inclusions in authigenic minerals and applications in sedimentary basin analysis. Short course University of Manchester, p 83Google Scholar
  68. Rieken R, Gaupp R (1991) Fluideinschluß-Untersuchungen an Sandsteinen des Gasfeldes Thönse. Niedersächsische Akademie der Geowissenschaften Veröffentlichungen Heft 6:68–98Google Scholar
  69. Roedder E (1984) Fluid Inclusions, vol 12. BookCrafters, Inc., Virginia, p 644Google Scholar
  70. Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169CrossRefGoogle Scholar
  71. Scheck M, Bayer U, Lewerenz B (2003) Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics 373:55–73CrossRefGoogle Scholar
  72. Schenk O, Urai JL (2004) Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine. Contrib Mineral Petrol 146:671–682CrossRefGoogle Scholar
  73. Schleder Z, Urai JL (this volume) Microstructural evolution of deformation modified primary halite from the Middle Triassic Röt Formation at Hengelo, the NetherlandsGoogle Scholar
  74. Secor DT (1965) Role of fluid pressure in jointing. Am J Sci 263:633–646CrossRefGoogle Scholar
  75. Shearman DJ, Mossop G, Dunsmore H, Martin M (1972) Origin of gypsum veins by hydraulic fracture. Institution of Mining and Metallurgy; Transactions Section B:B149–B155Google Scholar
  76. Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, London, p 239Google Scholar
  77. Sibson RH (2003) Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes. AAPG Bull 87(6):901–908CrossRefGoogle Scholar
  78. Sibson RH (2004) Controls on maximum fluid overpressure defining conditions for mesozonal mineralization. J Struct Geol 26(6–7):1127–1136CrossRefGoogle Scholar
  79. Suchecki RK, Land LS (1983) Isotopic geochemistry of burial-metamorphosed volcanogenic sediments, Great Valley sequence, northern California. Geochim Cosmochim Acta 47:1487–1499CrossRefGoogle Scholar
  80. Sunagawa I (1984) Growth of crystals in nature. In: Sunagawa I (ed) Material science of the earth’s interior. Terra Scientific Publishing Company, Tokyo, pp 63–105Google Scholar
  81. Szurlies M, Bachmann GH, Menning M, Nowaczyk NR, Käding K-C (2003) Magnetostratigraphy and high-resolution lithostratigraphy of the Permian-Triassic boundary interval in Central Germany. Earth Planet Sci Lett 212:263–278CrossRefGoogle Scholar
  82. Teufel LW, Rhett. DW, Farrel HE (1991) Effect of reservoir depletion and pore pressure drawdown on in situ stress and deformation in the Ekofisk Field, North Sea. In: Roegiers JC (ed) Rock mechanics as a multidisciplinary science, Proceedings of the 32nd U.S. Symposium, A.A. Balkema, Rotterdam, Brookfield, pp 63–72Google Scholar
  83. Townend J, Zoback MD (2000) How faulting keeps the crust strong. Geology 28(5):399–402CrossRefGoogle Scholar
  84. Trusheim F (1957) Über Halokinese und ihre Bedeutung für die struktruelle Entwicklung Norddeutschlands. Z. deutschen geologischen Gesellschaft 109:111–151Google Scholar
  85. Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature 324(6097):554–557CrossRefGoogle Scholar
  86. Urai JL, Williams PF, Roermond HLM (1991) Kinematics of crystal growth in syntectonic fibrous veins. J Struct Geol 13(7):823–836CrossRefGoogle Scholar
  87. van Bergen F, de Leeuw K (2001) Mechanism proposed to explain salt cementation near salt domes. TNO-NITG-Information May:19–20Google Scholar
  88. Weibel R (1998) Diagenesis in oxidising and locally reducing conditions – an example from the Triassic Skagerrak Formation, Denmark. Sediment Geol 121(3–4):259–276CrossRefGoogle Scholar
  89. Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter Sandstone, North German Basin. Sediment Geol 169:129–149CrossRefGoogle Scholar
  90. Worden RH, Smalley PC, Oxtoby NH (1995) Gas souring by thermochemical sulfate reduction at 140°C. AAPG Bull 79:854–863Google Scholar
  91. Ziegler PA (1990) Geological atlas of Western and Central Europe, Shell International Petroleum Maatschappij B.V., Bath, p 239Google Scholar
  92. Zwart EW, Touret JLR (1994) Melting behaviour and composition of aqueous fluid inclusions in fluorite and calcite: applications within the system H2O–CaCl2–NaCl. Euro J Mineral 6:773–786Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Geologie-Endogene DynamikRWTH AachenAachenGermany

Personalised recommendations