International Journal of Earth Sciences

, Volume 94, Issue 3, pp 433–446 | Cite as

Erosional processes, topographic length-scales and geomorphic evolution in arid climatic environments: the ‘Lluta collapse’, northern Chile

  • Michael StrasserEmail author
  • Fritz SchluneggerEmail author
Original paper


The ‘Lluta collapse’ of northern Chile is one of the oldest recognizable landslides (>2.5 Ma) in a hyperarid continental setting. This paper develops a conceptual landscape evolution model of the ‘Lluta collapse’ and analyzes the controls of mass wasting and erosion/sediment transport in channels on the topographic development. The data presented here imply that high relief along a topographic scarp, surface fracturing, elevated groundwater table during a more humid climate and an aquitard underlying permeable ignimbrites are preparatory causal factors for landsliding >2.5 Ma ago. A strong seismic event then possibly resulted in the displacement of ca. 26 km3 of mass. Subsequent modification of the landslide scar occurred by backward erosion, resulting in the establishment of a dendritic drainage network and the removal of an additional ca. 24 km3 of material. It appears that this mass was produced by mass wasting in the headwaters, and exported by high-concentrated debris flows in channels. In addition, morphometric information suggest that whereas the geometrical development of the ‘Lluta collapse’ has been controlled by gravitational mass wasting, the rates of the development of this geomorphic unit have been limited by the export rates of mass and hence by the transport capacity of the flows.


Landscape morphology Mass wasting Debris flows Morphometry Central Andes 



Financial support for accomplishment of this study came from the Swiss Academy of Science (SANW), the ETH Barth Fond and the Swiss National Science Foundation (credit No. 620-57863). We greatly appreciate the useful discussions and constructive reviews by F. Kober, G. Zeilinger, D. Burbank, H. von Eynatten and R. Gaupp. Special thanks goes to T. Bührer (Institute of Photogrammetry and Remote sensing at ETH Zurich) who helped the senior author during DEM generation, and to R. von Rotz for field support. This paper further benefitted from very supportive discussions with K. Thuro, A. Densmore, G. Simpson and R. Salas.


  1. Alpers CN, Brimhall GH (1988) Middle Miocene climatic-change in the Atacama desert, northern Chile: evidence from supergene mineralization at La-Escondida. Geol Soc Am Bull 100:1640–1656CrossRefGoogle Scholar
  2. Clark AH, Tosdal RM, Farrar E, Plazolles VA (1990) Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, southeastern Peru. Econ Geol 85:1604–1628Google Scholar
  3. Cressie N (1990) The origins of kriging. Math Geol 22:239–252CrossRefMathSciNetGoogle Scholar
  4. Erismann TH (1979) Mechanisms of large landslides. Rock Mech 12:12–46Google Scholar
  5. Galli C, Dingman R (1962) Cuadrángulos Pica, Alca, Matilla y Chacarilla, con un estudio sobre los recursos de agua subterranean. Santiago, Chile, Instituto de Investigaciones Geológicas, 125 ppGoogle Scholar
  6. García M (2002) Evolution Olig-Miocéne de l’Altiplano occidental (arc et avant-arc du nord du Chili, Arica): Tectonique, volcanism, sédimentation, géomorphologie et bilan érosion-sédimentation. Géologie Alpine, 118 ppGoogle Scholar
  7. García M, Hérail G (2005) Fault-related folding, drainage network evolution and valley incision during the Neogene in the Andean Precordillera of northern Chile. Geomorphology 65:279–300CrossRefGoogle Scholar
  8. Hartley AJ, Chong G (2002) Late Pliocene age for the Atacama desert: implications for the desertification of western South America. Geology 30:43–46Google Scholar
  9. Hermanns RL, Strecker MR (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geol Soc Am Bull 111:934–948CrossRefGoogle Scholar
  10. Hoke G, Isacks B, Jordan TE, Yu JS (2004) Groundwater-sapping origin for the giant quebradas of northern Chile. Geology 32:605–608Google Scholar
  11. Hovius N, Stark CP, Tutton MA, Abbott LD (1998) Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea. Geology 26:1071–1074Google Scholar
  12. Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J Geophys Res Solid Earth Planets 93:3211–3231Google Scholar
  13. Jibson RW (1996) Use of landslides for paleoseismic analysis. Eng Geol 43:291–323CrossRefGoogle Scholar
  14. Kober F, Schlunegger F, Schneider H, Zeilinger G (2005) Surface uplift and climate change: the geomorphic evolution of the western escarpment of the Andes at 18.30°S (northern Chile) between the Oligocene/Miocene and the present. GSA special volume on Tectonics, Climate and Landscape Evolution (in press)Google Scholar
  15. Kohler I (1999) Syntektonische kontinentale Sedimentation auf der Westabdachung der Anden Nordchiles (18° bis 19°S). University of Stuttgart, Profil 17, pp 1–165Google Scholar
  16. Kraus K (1994) Photogrammetrie Band 1: Grundlagen und Standartverfahren. Dümmlers Verlag, Bonn, p 394Google Scholar
  17. Lague D, Davy P (2003) Constraints on the long-term colluvial erosion law by analyzing slope-area relationships at various tectonic uplift rates in the Siwaliks Hills (Nepal). J Geophys Res 108, 10.1029/2002JB001893Google Scholar
  18. Montgomery DR, Dietrich WE (1992) Channel initiation and the problem of landscape scale. Science 255:826–830Google Scholar
  19. Mortimer C, Saric N (1975) Cenozoic studies in northernmost Chile. Geologische Rundschau 64:484–493Google Scholar
  20. Munoz N, Charrier R (1996) Uplift of the western border of the Altiplano on a westvergent thrust system, northern Chile. J South Am Earth Sci 9(3–4):171–181CrossRefGoogle Scholar
  21. Philip H, Ritz JF (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27:211–214Google Scholar
  22. Salas R, Kast RF, Monecinos F, Sals I (1966) Geología y recursos minerales del Departamento de Arica, Provincia de Tarapacá. Instituto de Investigaciones Geologica, Boletin, 21, p 114Google Scholar
  23. Siebert L (1984) Large volcanic debris avalanches; characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  24. Slingerland R, Harbaugh J, Furlong K (1993) Simulating clastic sedimentary basins. Prentice-Hall, Englewood Cliffs, p 220Google Scholar
  25. Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2000) Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol Soc Am Bull 112(8):1250–1263CrossRefGoogle Scholar
  26. Solonenko VP (1977) Landslide and collapses in seismic zones and their prediction. Int Assoc Eng Geol Bull 15:4–8Google Scholar
  27. Stock J, Dietrich WE (2003) Valley incision by debris flows: evidence of a topographic signature. Water Resour Res 39, 10.1029/2001WR001057Google Scholar
  28. Tucker GE, Bras RL (1998) Hillslope processes, drainage density, and landscape morphology. Water Resour Res 34:2751–2764CrossRefGoogle Scholar
  29. Tucker GE, Slingerland R (1996) Predicting sediment flux from fold and thrust belts. Basin Res 8(3):329–349CrossRefGoogle Scholar
  30. Uhlig D (1999) Die Westabdachung der Zentralanden in den Provinzen Arica und Parinacota, Nordchile: Landschaftsentwicklung und Geologie. Dissertation. University of Stuttgart, Profil, 17, pp 167–244Google Scholar
  31. Ui T, Yamamoto H, Suzukikamata K (1986) Characterization of debris avalanche deposits in Japan. J Volcanol Geotherm Res 29:231–243CrossRefGoogle Scholar
  32. Von Rotz R, Schlunegger F, Heller F (2005) Age constraints on relief growth and tectonic block rotation in the Andes of northern Chile. Terra Nova (in review)Google Scholar
  33. Whipple KX, Tucker GE (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res Solid Earth 104:17661–17674Google Scholar
  34. Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar-, K/Ar-, and He-exposure-) ages of Cenozoic magmatic rocks from northern Chile (18°–22°S): implication for magmatism and tectonic evolution of the central Andes. Revista Geologica de Chile 27:205–240Google Scholar
  35. Wörner G, Uhlig D, Kohler I, Seyfried H (2002) Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198CrossRefGoogle Scholar
  36. Zeilinger G, Schlunegger F, Simpson G (2005) The Oxaya Anticline (northern Chile), a buckle enhanced by river incision? Terra Nova (in press)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Geological InstituteETH ZürichZurichSwitzerland
  2. 2.Institute of Geological SciencesUniversity of BernBernSwitzerland

Personalised recommendations