Advertisement

International Journal of Earth Sciences

, Volume 95, Issue 1, pp 50–67 | Cite as

Crustal structure in the Carpatho-Pannonian region: insights from three-dimensional gravity modelling and their geodynamic significance

  • Péter SzafiánEmail author
  • Frank Horváth
Original paper

Abstract

A three-dimensional gravity modelling of the Carpatho-Pannonian region was carried out to get a better image of the Moho boundary and the most prominent intra-crustal density heterogeneities. At first, only the major density boundaries were considered: the bottom of the Tertiary basin fill, the Moho discontinuity and the lithosphere to asthenosphere boundary. Density contrasts were represented by relative densities. The improved density model shows a transitional unit of high density at the base of the crust along the Teisseyre-Tornquist Zone. In the Western Carpathians, an extensive, relatively low-density unit was inferred in mid-crustal levels. The border zone between the Southern Carpathians and the Transylvanian basin is characterized by a sharp, step-like contact of the two crustal units. The Moho configuration reveals important information on the tectonic evolution of the region. Zones of continental collision are represented by thick Moho roots (Eastern Alps, Eastern Carpathians). Transpressional orogenic segments, however, are different: in the Western Carpathians, the Moho is a flat surface; in the Dinarides, a medium Moho root is observed; the Southern Carpathians are characterized by a thick crustal root. The differences are explained with the presence or absence of “subductible” oceanic crust along the Carpathians during the extrusion of Pannonian blocks.

Keywords

Gravity modelling Crustal structure Carpathians Pannonian basin Teisseyre-Tornquist Zone 

Notes

Acknowledgements

Hans-Jürgen Götze and Sabine Schmidt are cordially thanked for their help with three-dimensional modelling. Detailed and thorough reviews by E. Kissling and H.-J. Götze have significantly helped the improvement of the manuscript and are highly appreciated. The research was supported through the Integrated Basin Studies project of the European Community (Contract JOU2-CT92-0110), the Bolyai János Research Grant and the Hungarian Scientific Research Fund (OTKA D34598, TO34928).

References

  1. Aljinović B (1987) On certain characteristics of the Mohorovičić discontinuity in the region of Yugoslavia. Acta Geol Yugosl Akad Znan Umjet 17:13–20Google Scholar
  2. Babuška V, Plomerová J, Šileny J (1987) Structural model of the subcrustal lithosphere in Central Europe. In: Fuchs K, Froidevaux C (eds) Composition, structure and evolution of the lithosphere-asthenosphere system. AGU Geodyn Ser 16, pp 239–251Google Scholar
  3. Babuška V, Plomerová J, Granet M (1990) The deep lithosphere in the Alps: a model inferred from P residuals. Tectonophysics 176:137–165CrossRefGoogle Scholar
  4. Bada G (1999) Cenozoic stress field evolution in the Pannonian basin and surrounding Orogens: inferences from kinematic indicators and finite element modelling. PhD Thesis, Vrije Universiteit, Amsterdam, pp 1–204Google Scholar
  5. Bada G, Cloetingh S, Gerner P, Horváth F (1998) Sources of recent stress in the Pannonian region: inferences from finite element modelling. Geophys J Int 134:87–101CrossRefGoogle Scholar
  6. Bada G, Horváth F, Fejes I, Gerner P (1999) Review of the present-day geodynamics of the Pannonian basin: progress and problems. J Geodyn 27:501–527CrossRefGoogle Scholar
  7. Bada G, Horváth F, Cloetingh S, Coblenz D, Tóth T (2001) Role of topography-induced gravitational stress in basin inversion: the case study of the Pannonian basin. Tectonics 20:343–363CrossRefGoogle Scholar
  8. Balla Z (1984) The Carpathian loop and the Pannonian basin: a kinematic analysis. Geophys Trans 30:313–353Google Scholar
  9. Beránek B, Weiss J, Hrdlicka A, Dudek A, Zounkova M, Suk M, Feifar M, Militzer H, Knothe H, Mituch E, Posgay K, Uchman J, Sollogub VB, Chekunov AV, Prosen D, Milovanović B, Roksandić M (1972) The results of the measurements along the international profiles. In: Szénás Gy (ed) The crustal structure of Central and Southeastern Europe based on the results of explosion seismology. Spec edit Geophys Transact, pp 133–139Google Scholar
  10. Bezák V, Šefara J, Bielik M, Kubeš P (1997) Models of the Western Carpathians lithosphere. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the Western Carpathians. Mineralia Slovaca–Monograph, Bratislava, pp 25–34Google Scholar
  11. Bielik M (1988) A preliminary stripped gravity map of the Pannonian Basin. Phys Earth Planet Int 51:185–189CrossRefGoogle Scholar
  12. Bielik M (1991) Density modelling of the Earth’s crust in the Intra-Carpathian basins. In: Karamata S (ed) Geodynamic evolution of the Pannonian basin. Acad Conf Serbian Acad Sci Arts 62:123–132Google Scholar
  13. Bielik M (1995) Continental convergence in the area of the Western Carpathians on the basis of density modelling. Geol Carpathica 46:3–12Google Scholar
  14. Bielik M (1998) Analysis of the gravity field in the Western and Eastern Carpathian junction area: density modelling. Geol Carpathica 49:75–83Google Scholar
  15. Bielik M, Mocanu V (1998) Deep lithospheric structure of the Eastern Carpathians: density modelling. Contr Geoph Geod 28(2):95–100Google Scholar
  16. Bielik M, Fusán O, Burda M, Hübner M, Vyskoćil V (1990) Density models of the Western Carpathians. Contr Geophys Inst Slov Acad Sci 20:103–113Google Scholar
  17. Bielik M, Sitárová A, Plašienka D, Putiš M (1992) Three-dimensional quantitative interpretation of gravity anomalies in the south-west part of the Malé Karpaty Mts. (Western Carpathians). Geol Carpathica 42:139–146Google Scholar
  18. Bielik M, Šefara J, Soták J, Bezák V, Kubeš P (1998) Deep structure of the Western and Eastern Carpathian junction. In: M Rakús (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 259–271Google Scholar
  19. Blížkovský M, Ibrmajer J, Novotný A, Suk M, Šefara J (1994a) Explanation of the main gravity structures in the Czechoslovak territory and its close vicinity. In: Bucha V, Blížkovský M (eds) Crustal structure of the Bohemian Massif and the West Carpathians. Academia Praha, pp 174–177Google Scholar
  20. Blížkovský M, Šefara J, Burda M, Vyskočil V (1994b) Stripped gravity maps in Czechoslovakia. In: Bucha V, Blížkovský M (eds) Crustal structure of the Bohemian Massif and the West Carpathians. Academia, Praha, pp 162–174Google Scholar
  21. Blundell D, Mueller St, Mengel K (1992) Geodynamics of Europe. In: Blundell D, Freeman R, Mueller St (eds) A continent revealed; the European geotraverse. Cambridge University Press, Cambridge, pp 215–231Google Scholar
  22. Bojdys G, Lemberger M (1986) Three-dimensional gravity modelling of Earth’s crust and upper mantle in the Polish Carpathians. Ann Soc Geol Pol 56:349–373Google Scholar
  23. Bojdys G, Lemberger M, Woźnicki J, Ziętek J (1983) The structure of lithosphere in the Krakow-Zakopane profile in the light of gravity modelling. Kwart Geol 27:605–616Google Scholar
  24. Bortnitskaya VM, Burov VS, Vishniakov IB, Karpentshuk YP, Petrashkevitsh MI, Piliptshuk AS, Predtetshenskaya NS, Sviridienko VG, Sovchik YV (1977) Reservoir parameters (in Russian). In: Burov VS, Kruglov SS (eds). Hydrocarbon fields in the deep-seated horizons of the Ukrainian Carpathians: a foundation of the exploration trend. Naukova Dumka, Kiev, pp 68–80Google Scholar
  25. Cassinis R, Cassano E, Cappelli V (1990) Gravity modelling along the Southern Segment of the European Geotraverse from the Gulf of Genoa to the Swiss Molasse Basin. Tectonophysics 176:183–192CrossRefGoogle Scholar
  26. Cornea I, Rădulescu F, Pompilian A, Sova A (1981) Deep seismic sounding in Romania. Pure Appl Geophys 119:1144–1156CrossRefGoogle Scholar
  27. Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcan 7:1–13Google Scholar
  28. Csontos L, Nagymarosy A, Horváth F, Kováč M (1992) Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208:221–241CrossRefGoogle Scholar
  29. Dadlez R, Narkiewicz M, Stephenson RA, Visser MTM, van Wees JD (1995) Tectonic evolution of the Mid-Polish trough: modelling implications and significance for central European geology. Tectonophysics 252:179–195CrossRefGoogle Scholar
  30. Dicea O (1996) Tectonic setting and hydrocarbon habitat of the Romanian external Carpathians. In: Ziegler PA, Horváth F (eds) Peri-Tethys Memoir 2: structure and prospects of Alpine basins and Forelands. Mém Mus natn Hist nat Paris, 170, pp 403–425Google Scholar
  31. Dimitrijević MD (1995) The map of Moho surface and Bouguer gravity map. In: Dimitrijević MD (ed) Geological Atlas of Serbia, 1:2000000, Republ Found Geological Investigations and RGF Geophysical DepartmentGoogle Scholar
  32. Dragašević T (1987) The Mohorovičić discontinuity, structure and classification of the Earth crust in the eastern region of Yugoslavia. Acta Geod Jugosl Akad Znam Umjet 17:39–45Google Scholar
  33. Dumitrescu I, Săndulescu M (1970) Harta tectonică a României (Geological map of Romania). Atlasul geologic, foaia nr. 6, Inst. Geol, BucureştiGoogle Scholar
  34. Ebbing J (2004) The crustal structure of the Eastern Alps from a combination of 3D gravity modelling and isostatic investigations. Tectonophysics 380:89–104CrossRefGoogle Scholar
  35. Ebbing J, Braitenberg C, Götze HJ (2001) Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics 337:191–208CrossRefGoogle Scholar
  36. Fodor L, Franců J, Krejči O, Stráník Z (1995) Paleogeographic and tectonic evolution of the Carpathian flysch belt of the southern Moravia (Czech Republic). In: Proceedings of the 15th Carpathian-Balkan Geological Congress, Spec Publ Geol Soc Greece, pp 31–33Google Scholar
  37. Fodor L, Csontos L, Bada G, Györfi I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of palaeostress data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: tertiary extension within the Alpine Orogen. Geol Soc Lond Spec Publ 156:295–334Google Scholar
  38. Gálfi J, Stegena L (1959) Deep reflections and crustal structure in the Hungarian basin. Ann Univ Sci R Eötvös Sect Geol 3:41–47Google Scholar
  39. Gerner P, Bada G, Dövényi P, Müller B, Oncescu MC, Cloetingh S, Horváth F (1999) Recent tectonic stress and crustal deformation in and around the Pannonian Basin: data and models. In: Durand B, Jolivet L, Horváth F, Sérrane M (eds). The Mediterranean basins: extension within the Alpine Orogen. Geol Soc Lond Spec Publ 156:269–294CrossRefGoogle Scholar
  40. Götze HJ, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53:1096–1108CrossRefGoogle Scholar
  41. Götze HJ, Rosenbach O, Schöler W (1978) Gravimetrische Unterschungen in den östlichen Zentralalpen. Geol Rundsch 68:61–82CrossRefGoogle Scholar
  42. Götze HJ, Lahmeyer B, Schmidt S (1990) Introduction to the 3-D modeling package IGAS. Manuscript, FU Berlin, pp 1–20Google Scholar
  43. Götze HJ, Meurers B, Schmidt S, Steinhauser P (1991) On the isostatic state of the eastern Alps and the central Andes; a statistical comparison. In: Harmon RS, Rapela CW (eds). Andean magmatism and its tectonic setting. Geol Soc America Spec Paper 265:279–290Google Scholar
  44. Grabowska T, Perchuć E (1985) Gravimetric-seismic model of the Earth’s crust in the region of Southeastern Poland. Publ Inst Geophys Pol Acad Sci A 16 (175):43–56Google Scholar
  45. Grabowska T, Raczyńska M (1991) Structure of the Earth’s crust on the Polish Lowland in the light of gravimetric modelling. Publ Inst Geophys Pol Acad Sci A 19 (236):85–110Google Scholar
  46. Grabowska T, Bojdys G, Dolnicki J (1998) Three-dimensional density model of the Earth’s crust and the upper mantle for the area of Poland. J Geodyn 25(1):5–24CrossRefGoogle Scholar
  47. Grad M, Janik T, Yliniemi J, Guterch A, Luosto U, Tiira T, Komminaho K, Środa P, Höing K, Makris J, Lund CE (1999) Crustal structure of the Mid-Polish Trough beneath the Teisseyre Tornquist Zone seismic profile. Tectonophysics 314:145–160CrossRefGoogle Scholar
  48. Granser H (1987) Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function. Geophys Prosp 35:1030–1041Google Scholar
  49. Grow JA, Mattick RE, Bérczi-Makk A, Péró Cs, Hajdú D, Pogácsás Gy, Várnai P, Varga E (1994) Structure of the Békés basin inferred from seismic reflection, well and gravity data. In: Teleki PG, Mattick RE, Kókai J (eds). Basin Analysis in Petroleum Exploration, A case study from the Békés basin, Hungary. Kluwer Dordrecht, pp 1–38Google Scholar
  50. Guterch A, Grad M, Materzok R, Perchuć E (1986) Deep structure of the Earth’s crust in the contact zone of the Palaeozoic and Precambrian platforms in Poland (Tornquist-Teisseyre zone). Tectonophysics 128:251–279CrossRefGoogle Scholar
  51. Guterch A, Grad M, Janik T, Materzok R, Luosto U, Yliniemi J, Lück E, Schulze A, Förste K (1994) Crustal structure of the transition zone between Precambrian and Variscan Europe from new seismic data along LT-7 profile (NW Poland and eastern Germany). CR Acad Sci Paris 319 (II):1489–1496Google Scholar
  52. Guterch A, Grad M, Thybo H, Keller GR (1999) The Polonaise Working Group POLONAISE ’97—an international seismic experiment between Precambrian and Variscan Europe in Poland. Tectonophysics 314:101–121CrossRefGoogle Scholar
  53. Hajnal Z, Reilkoff B, Posgay K, Hegedüs E, Takács E, Asudeh I, Mueller St, Ansorge J, DeIaco R (1996) Crustal-scale extension in the central Pannonian basin. Tectonophysics 264:191–204CrossRefGoogle Scholar
  54. Hauser F, Raileanu V, Fielitz W, Bala A, Prodehl C, Polonic G, Schulze A (2001) VRANCEA99—the crustal structure beneath the southeastern Carpathians and the Moesian Platform from a seismic refraction profile in Romania. Tectonophysics 340:233–256CrossRefGoogle Scholar
  55. Holliger K, Kissling E (1992) Gravity interpretation of a unified 2-D acoustic image of the central Alpine collision zone. Geophys J Int 111:213–225Google Scholar
  56. Horváth F (1988) Thickness of Neogene-Quaternary basin fill. Map. In: Royden LH, Horváth F (eds) The Pannonian basin, a study in basin evolution. Am Assoc Pet Geol Mem 45Google Scholar
  57. Horváth F (1990) Structural evolution of the Pannonian basin: a progress report. Acta Geol Geophys Mont Hung 25:243–255Google Scholar
  58. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357CrossRefGoogle Scholar
  59. Horváth F (1995) Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration. Mar Petrol Geol 12:837–844CrossRefGoogle Scholar
  60. Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics 266:287–300CrossRefGoogle Scholar
  61. Horváth F, Stegena L (1977) The Pannonian basin: a Mediterranean interarc basin. In: Biju-Duval B, Montadert L, (eds) International symposium on the structural history of the Mediterranean basins. Editions Technip, Paris, pp 333–340Google Scholar
  62. Jensen SL, Thybo H, The POLONAISE ’97 Working GROUP (2002) Moho topography and lower crustal wide-angle reflectivity around the TESZ in Southern Scandinavia and northeastern Europe. Tectonophysics 360:187–213CrossRefGoogle Scholar
  63. Kissling E (1993) Deep structure of the Alps—what do we really know? Phys Earth Planet Int 79:87–112CrossRefGoogle Scholar
  64. Kober L (1928) Der Bau der Erde. Bornträger, Berlin, pp 1–499Google Scholar
  65. Królikowski C, Petecki Z, Dadlez R (1996) Vertical discontinuities in the Earth’s crust of the TESZ in Poland—gravity data. Geol Quart 40:155–168Google Scholar
  66. Lankreijer A, Kováč M, Cloetingh S, Pitoňák P, Hlôška M, Biermann C (1995) Quantitative subsidence analysis and forward modelling of the Vienna and Danube basins: thin-skinned versus thick-skinned extension. Tectonophysics 252:433–451CrossRefGoogle Scholar
  67. Lankreijer A, Mocanu V, Cloetingh S (1997) Lateral variations in lithosphere strength in the Romanian Carpathians: constraints on basin evolution. Tectonophysics 272:269–290CrossRefGoogle Scholar
  68. Lawrence SR, Tari-Kovačić V, Gjukić B (1995) Geological evolution model of the Dinarides. Nafta 46:103–113Google Scholar
  69. Lăzărescu V, Cornea I, Rădulescu F, Popescu M (1983) Moho surface and recent crustal movements in Romania: geodynamic connections. An Inst Geol Geofiz Bucaresti 63:83–91Google Scholar
  70. Lenkey L (1999) Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution. PhD Thesis, Vrije Universiteit Amsterdam, pp 1–215Google Scholar
  71. Lenkey L, Horváth F, Dövényi P, Szafián P (1998) Geophysical features and structural conditions of the Pannonian basin and its surroundings: a review. Rep Geod Warsaw Univ Techn 5:11–34Google Scholar
  72. Lillie RJ, Bielik M, Babuška M, Plomerová J (1994) Gravity modelling of the lithosphere in the Eastern Alpine-Western Carpathian-Pannonian Basin region. Tectonophysics 231:215–235CrossRefGoogle Scholar
  73. Linzer HG (1996) Kinematics of retreating subduction along the Carpathian arc, Romania. Geology 24:167–170CrossRefGoogle Scholar
  74. Mahel’ M (ed) (1973) Tectonic map of the Carpathian-Balkan mountain system and adjacent areas. Scale 1:1 million, GÚDŠ, Bratislava and UNESCOGoogle Scholar
  75. Maţenco L, Zoetemeijer R, Cloetingh S, Dinu C (1997) Lateral variations in mechanical properties of the Romanian external Carpathians: inferences of flexure and gravity modelling. Tectonophysics 282:147–166CrossRefGoogle Scholar
  76. Matenco L, Schmid St (1999) Exhumation of the Danubian nappes system (South Carpathians) during Early Tertiary: inferences from kinematic and paleostress analysis at the Getic/Danubian nappes contact. Tectonophysics 314:401–422CrossRefGoogle Scholar
  77. Matenco L, Bertotti G, Cloetingh S, Dinu C (2003) Subsidence analysis and tectonic evolution of the external Carpathian-Moesian platform region during Neogene times. Sed Geol 156:71–94CrossRefGoogle Scholar
  78. Márton E (1993) Paleomagnetism in the Mediterraneaneum from Spain to the Aegean: a review of data relevant to Cenozoic movements. In: Boschi E, Mantovani E, Morelli A (eds) Recent evolution and seismicity of the Mediterranean region. Kluwer Academic Publishers, NATO ASI Ser C, 402:367–402Google Scholar
  79. Márton E (2001) Tectonic implications of Tertiary paleomagnetic results from the PANCARDI area (Hungarian contribution). Acta Geol Hung 44:135–144Google Scholar
  80. Márton E, Márton P (1978) On the difference between the palaeomagnetic poles from the Transdanubian Range and the Villány Mountains. Magyar Geofizika 19:129–136Google Scholar
  81. Márton E, Márton P (1996) Large scale rotation in North Hungary during the Neogene as indicated by palaeomagnetic data. In: Morris A, Tarling DH (eds) Paleomagnetism and tectonics of the Mediterranean region. Geol Soc Lond Spec Publ 105:153–173Google Scholar
  82. Márton E, Drobne K, Cosovic V, Moro V (2003) Palaeomagnetic evidence for Tertiary counterclockwise rotation of Adria. Tectonophysics 377:143–156CrossRefGoogle Scholar
  83. Meskó A (1988) Reduced regional Bouguer anomaly map of Hungary. Acta Geod Geoph Mont Hung 23(1):89–95Google Scholar
  84. Mueller St, Panza GF (1984) The lithosphere-asthenosphere system in Europe. In: Glasm DA, Mueller St (eds) First EGT Workshop—The Northern Segment. European Science Found, Strasbourg, pp 93–112Google Scholar
  85. Nemesi L, Stomfai R (1992) Some supplements to the exploration of the basement of the Békés-basin (in Hungarian with English abstract). Magyar Geofizika 33:70–79Google Scholar
  86. Panza GF (1985) Lateral variations in the lithosphere in correspondence of the Southern Segment of EGT. In: Galson DA, Mueller St (eds). Second EGT workshop: the southern segment. European Science Foundation, Strasbourg, pp 47–51Google Scholar
  87. Papp G, Kalmár J (1995) Investigation of sediment compaction in the Pannonian basin using 3D gravity modelling. Phys Earth Planet Int 88:89–100CrossRefGoogle Scholar
  88. Pătraşcu Š, Bleahu M, Panaiotu C, Panaiotu CE (1992) The paleomagnetism of the Upper Cretaceous magmatic rocks in the Banat area of the South Carpathians: tectonic implications. Tectonophysics 213:341–352CrossRefGoogle Scholar
  89. Pătraşcu Š, Panaiotu C, Şecleman M, Panaiotu CE (1994) Timing of rotational motion of Apuseni Mountains (Romania): palaeomagnetic data from Tertiary magmatic rocks. Tectonophysics 233:163–176CrossRefGoogle Scholar
  90. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41CrossRefGoogle Scholar
  91. Posgay K, Albu I, Mayerova M, Nakladalova Z, Ibrmajer I, Blizkovsky M, Aric K, Gutdeutsch R (1991) Contour map of the Mohorovičić discontinuity beneath Central Europe. Geophys Trans 36:7–13Google Scholar
  92. Posgay K, Bodoky T, Hegedüs E, Kovácsvölgyi S, Lenkey L, Szafián P, Takács E, Tímár Z, Varga G (1995) Asthenospheric structure beneath a Neogene basin in SE Hungary. Tectonophysics 252:467–484CrossRefGoogle Scholar
  93. Posgay K, Takács E, Szalay I, Bodoky T, Hegedüs E, Kántor JI, Timár Z, Varga G, Bérczi I, Szalay Á, Nagy Z, Pápa A, Hajnal Z, Reilkoff B, Mueller St, Ansorge J, De Iaco R, Asudeh I (1996) International deep reflection survey along the Hungarian Geotraverse. Geophys Trans 40:1–44Google Scholar
  94. Pospíšil L, Filo M (1980) The West Carpathian central gravity minimum and its interpretation (in Slovakian with English summary). Miner Slovaca 12:149–164Google Scholar
  95. Rădulescu F (1988) Seismic models of the crustal structure in Romania. Rev Roum Géol Géophys Géogr Ser Géophys 32:13–17Google Scholar
  96. Rădulescu DP, Cornea I, Săndulescu M, Constantinescu P, Rădulescu F, Pompilian A (1976) Structure de la croûte terrestre en Roumanie. Essai d’interprétation des études seismiques profondes. An Inst Geol Geofiz 50:5–36Google Scholar
  97. Răileanu V, Diaconescu C, Rădulescu F (1994) Characteristics of Romanian lithosphere from deep seismic reflection profiling. Tectonophysics 239:165–185CrossRefGoogle Scholar
  98. Ratschbacher L, Behrmann JH, Pahr A (1990) Penninic windows at the eastern end of the Alps and their relation to the intra-Carpathian basins. Tectonophysics 172:91–105CrossRefGoogle Scholar
  99. Ratschbacher L, Frisch W, Linzer HG, Merle O (1991b) Lateral extrusion in the Eastern Alps, part 2: Structural analysis. Tectonics 10:257–271Google Scholar
  100. Ratschbacher L, Merle O, Davy P, Cobold P (1991a) Lateral extrusion in the Eastern Alps, part 1: Boundary conditions and experiments scaled for gravity. Tectonics 10:245–256Google Scholar
  101. Roure F, Choukroune P, Polino R (1996) Deep seismic reflection data and new insights on the bulk geometry of mountain ranges. CR Acad Sci Paris 322:345–359Google Scholar
  102. Royden LH (1985) The Vienna basin: a thin-skinned pull-apart basin. In: Biddle KT, Christie-Blick N (eds). Strike-slip deformation, Basin formation and sedimentation. SEPM Spec Publ 37, pp 319–338Google Scholar
  103. Royden LH, Săndulescu M (1988) The Carpathian-Pannonian region with Outer Carpathian units. Map. In: Royden LH, Horváth F (eds) The Pannonian basin, a study in basin evolution. Am Assoc Pet Geol Mem 45Google Scholar
  104. Royden LH, Horváth F, Rumpler J (1983a) Evolution of the Pannonian basin system, 1. Tectonics. Tectonics 2:63–90Google Scholar
  105. Royden LH, Horváth F, Nagymarosy A, Stegena L (1983b) Evolution of the Pannonian basin system, 2. Subsidence and thermal history. Tectonics 2:91–137Google Scholar
  106. Rybach L, Buntebarth G (1984) The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics 103:335–344CrossRefGoogle Scholar
  107. Sanders CAE, Andriessen PAM, Cloetingh SAPL (1999) Life cycle of the East Carpathian orogen; Erosion history of a doubly vergent critical wedge assessed by fission track thermonchronology. J Geophys Res 104:29095–29112CrossRefGoogle Scholar
  108. Schmid SM, Berza T, Diaconescu V, Froitzheim N, Fügenschuh B (1998) Orogen-parallel extension in the Southern Carpathians. Tectonophysics 297:209–228CrossRefGoogle Scholar
  109. Schwendener H, Mueller St (1990) A three-dimensional model of the crust and upper mantle along the Alpine part of the European Geotraverse (EGT). Tectonophysics 176:193–214CrossRefGoogle Scholar
  110. Šefara J, Bielik M, Bezák V (1998) Interpretation of the Western Carpathians lithosphere based on geophysical data. In: M Rakús (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 273–280Google Scholar
  111. Sollogub VB et al (1973) Crustal structure of Central and Southeastern Europe by data of explosion seismology. Tectonophysics 20:1–33CrossRefGoogle Scholar
  112. Sollogub VB, Chekunov AV, Kaliuzhnaia LT (1988a) Seismic structure of the lithosphere along the Tchernigov-Beregovo section (In Russian). In: Sollogub VB, Chekunov AV, Litvinienko IB (eds) The lithosphere of Central and Eastern Europe: Geotraverses I, II, V.Naukova Dumka, Kiev, pp 63–67Google Scholar
  113. Sollogub VB, Chekunov AV, Kutas RI, Sologub HB, Borodulin MA, Pashkevich IK, Pustilnikov MP, Shliakovskiy BA, Cornea I, Rădulescu F, Demetrescu C (1988b) Study of the lithosphere in the territory of the USSR and Romania (In Russian). In: Sollogub VB, Chekunov AV, Litvinienko IB (eds). The lithosphere of Central and Eastern Europe: Geotraverses I, II, V.Naukova Dumka, Kiev, pp 113–124Google Scholar
  114. Sovchik YV, Vul MA (1996) New data on the structure and hydrocarbon prospects of the Ukrainian Carpathians and their foreland. In: Ziegler PA, Horváth F (eds). Peri-Tethys Memoir 2: structure and prospects of Alpine Basins and forelands. Mém Mus natn Hist nat Paris 170:391–401Google Scholar
  115. Sperner B, Ioane D, Lillie RJ (2004) Slab behaviour and its surface expression: new insights from gravity modelling in the SE-Carpathians. Tectonophysics 382:51–84CrossRefGoogle Scholar
  116. Ştefănescu M (ed) (1984) Elaborarea profileror, Scara 1:200000. Pentru completarea imaginii geologice a teritoriului R.S. România. 3-B: Secţiune geologică Galşa-Milova-Leucuşteni-Botineşti-Ratez-VÌrtopu-Gura Menti-Coţofenii-Din Dos-Malu Mare (Geological cross section at scale 1:200000, no. 3B). Min Minelor Petrolului Geologiei Inst Geologie GeofizicaGoogle Scholar
  117. Stephenson RA, Dadlez R, Narkiewicz M (1995) Implications of tectonic subsidence models for crustal structure beneath the Mid-Polish Trough. Studia Geophys Geod 39:289–297CrossRefGoogle Scholar
  118. Szabó Z, Páncsics Z (1999) Gravity map of Hungary corrected for basin effect. Geophys Trans 42:41–54Google Scholar
  119. Szafián P (1999) Gravity and tectonics: a case study in the Pannonian basin and the surrounding mountain belt. PhD Thesis, Vrije Universiteit, Amsterdam, pp 1–154Google Scholar
  120. Szafián P, Horváth F, Cloetingh S (1997) Gravity constraints on the crustal structure and slab evolution along a transcarpathian transect. Tectonophysics 272:233–247CrossRefGoogle Scholar
  121. Szafián P, Tari G, Horváth F, Cloetingh S (1999) Crustal structure of the Alpine-Pannonian transition zone: a combined seismic and gravity study. Int J Earth Sci 88:98–110CrossRefGoogle Scholar
  122. Szénás Gy (ed) (1972) The crustal structure of Central and Southeastern Europe based on the results of explosion seismology. Spec edit Geophys Transact, pp 1–172Google Scholar
  123. Tari G (1994) Alpine Tectonics of the Pannonian Basin. PhD Thesis, Rice University, Houston, Texas, pp 1–501Google Scholar
  124. Tari G (1996) Neoalpine tectonics of the Danube Basin (NW Pannonian Basin, Hungary). In: Ziegler PA, Horváth F (eds). Peri-Tethys Memoir 2: structure and prospects of Alpine Basins and forelands. Mém Mus Natn Hist nat 170:439–454Google Scholar
  125. Tari G, Dövényi P, Dunkl I, Horváth F, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Sérrane M (eds) The Mediterranean Basins: extension within the Alpine Orogen. Geol Soc London Spec Publ 156:215–250Google Scholar
  126. Tari V, Pamić J (1998) Geodynamic evolution of the Northern Dinarides and the southern part of the Pannonian Basin. Tectonophysics 297:269–281CrossRefGoogle Scholar
  127. Tomek Č (1988) Geophysical investigation of the Alpine-Carpathian arc. In: Rakuš M, Dercourt J, Nairn AEM (eds). Evolution of the Northern Margin of Tethys, vol I. Mém Soc Géol France, Paris, Nouvelle Série 154:167–199Google Scholar
  128. Tomek Č (1993) Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics 226:417–431CrossRefGoogle Scholar
  129. Tomek Č, Thon A (1988) Interpretation of seismic reflection profiles from the Vienna basin, the Danube Basin, and the Transcarpathian depression in Czechoslovakia. In: Royden LH, Horváth F (eds) The Pannonian basin, a study in basin evolution. Am Assoc Petr Geol Mem 45:171–182Google Scholar
  130. Tomek Č, Švancara J, Budík L (1979) The depth and the origin of the West Carpathian gravity low. Earth Planet Sci Let 44:39–42CrossRefGoogle Scholar
  131. Tomek Č, Dvořáková L, Ibrmajer I, Jiříček R, Koráb T (1987) Crustal profiles of active continental collisional belt: Czechoslovak deep seismic reflection profiling in the West Carpathians. Geophys J R Astr Soc 89:383–388Google Scholar
  132. Tomek Č, Ibrmajer I, Koráb T, Biely A, Dvořáková L, Lexa J, Zbořil A (1989) Crustal structures of the West Carpathians on deep seismic line 2T. Mineralia slovaca 21:3–26 (in Slovakian with English summary)Google Scholar
  133. TRANSALP Working Group (2002) First deep seismic reflection images of the Eastern Alps reveal giant crustal wedges and transcrustal ramps. Geophys Res Lett 29:10.1029–10.1032Google Scholar
  134. Vozár J, Szalaiová V, Šantavý J (1998) Interpretation of the Western Carpahian deep structures on the basis of gravimetric and seismic sections. In: M Rakús (ed) Geodynamic development of the Western Carpathians. Geol Surv Slovak Rep, Bratislava, pp 241–257Google Scholar
  135. Vyskočil V (1972) Comments on the manifestation of deep structure of Czechoslovakia in the anomalous gravity field. Trav Géoph Geofyz Sborn 20:127–139Google Scholar
  136. Vyskočil M, Burda M, Bielik M, Fusán O (1992) Further density models of the Western Carpathians. Contr Geophys Inst Slov Acad Sci 22:81–91Google Scholar
  137. Wortel MJR, Spakman W (1992) Structure and dynamics of subducted lithosphere in the Mediterranean region. Proc Kon Ned Wetensch 95:325–347Google Scholar
  138. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290:1910–1917CrossRefPubMedGoogle Scholar
  139. Yegorova TP, Starostenko VI (1999) Large-scale three-dimensional gravity analysis of the lithosphere below the transition zone from Western Europe to the East European Platform. Tectonophysics 314:83–100CrossRefGoogle Scholar
  140. Yegorova TP, Kozlenko VG, Pavlenkova NI, Starostenko VI (1995) 3-D density model for the lithosphere of Europe: construction method and preliminary results. Geophys J Int 121:873–892Google Scholar
  141. Yegorova TP, Starostenko VI, Kozlenko VG, Pavlenkova NI (1997) Three-dimensional gravity modelling of the European Mediterranean lithosphere. Geophys J Int 129:355–367Google Scholar
  142. Zajac HB, Kruglov SS, Hizhniakov AB (1988) Deep structure of the contact zone between the East European Platform and the Ukrainian Carpathians. In: Sollogub VB, Chekunov AV, Litvinienko IB (eds). The lithosphere of Central and Eastern Europe: Geotraverses I, II, V (In Russian). Naukova Dumka, Kiev, pp 97–101Google Scholar
  143. Ziegler PA (1990) Geological atlas of Western and Central Europe, 2nd ed. Shell Internationale Petroleum Maatschappij B.V., Geol Soc London, Elsevier, Amsterdam, pp 1–239Google Scholar
  144. Zielhuis A, Nolet G (1994) Shear-wave velocity variations in the upper mantle beneath central Europe. Geophys J Int 117:695–715Google Scholar
  145. Zoetemeijer R, Tomek Č, Cloetingh S (1999) Flexural expression of European continental lithosphere under the Western Outer Carpathians. Tectonics 18:843–861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of GeophysicsEötvös UniversityBudapestHungary

Personalised recommendations