International Journal of Earth Sciences

, Volume 94, Issue 4, pp 594–614 | Cite as

Evolution of the lithosphere in the area of the Rhine Rift System

  • P. A. ZieglerEmail author
  • P. Dèzes
Original paper


The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.


Rhine Graben Rifting Lithosphere Stress Magmatism 



This paper summarises the results of studies that were carried out by the authors and their colleagues in the course of the EUCOR-URGENT Project. For more extended discussions on the Late Palaeozoic–Mesozoic and the Cenozoic evolution of the lithosphere in the area of the Rhine Rift System we refer to Ziegler et al. (2004) and Dèzes et al. (2004), respectively. We specifically acknowledge contributions by S.M. Schmid, M.E. Schumacher, S. Cloetingh and J-D. van Wees to our studies. P. Dèzes acknowledges financial support by the Swiss Federal Office for Education and Science via a University of Basel ELTEM grant. We thank an anonymous reviewer for his comments on our manuscript.


  1. Achauer U, Masson F (2002) Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities. Tectonophysics 358:17–37Google Scholar
  2. Adamovic J, Coubal M (1999) Intrusive geometries and Cenozoic stress history of the northern part of the Bohemian Massif. GeoLines (Prague) 9:5–14Google Scholar
  3. Ahorner L (1975) Present-day stress field and seismotectonic block movements along major fault zones in Central Europe. Tectonophysics 29:233–249CrossRefGoogle Scholar
  4. Ahorner L (1983) Historical seismicity and present-day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs K, Von Gehlen K, Mälzer M, Murawski H, Semmel A (eds) Plateau uplift, the Rhenish Shield—a case history. Springer, Berlin Heidelberg New York, pp 198–221Google Scholar
  5. Andeweg B (2002) Cenozoic tectonic evolution of the Iberian Peninsula, causes and effects of changing stress fields. Ph.D. Thesis Vrije Universiteit Amsterdam. Netherlands Research School of Sedimentary Geology Publ 2020101:178 pGoogle Scholar
  6. Ansorge J, Blundell D, Müller St (1992) Europe’s lithosphere-seismic structure. In: Blundell D, Freeman R, Müller St. (eds) A continent revealed, the European Geotraverse. Cambridge University Press, Cambridge, pp 33–69Google Scholar
  7. Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res 106(B8):16387–16414Google Scholar
  8. Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in Southern Europe and North Africa: results of a right-lateral shear between the Appalachians and Urals. Geol Soc Am Bull 88:1305–1320Google Scholar
  9. Babushka V, Plomerova J (1992) The lithosphere in central Europe-seismological and petrological approach. Tectonophysics 207:141–163Google Scholar
  10. Babushka V, Plomerova J (2001) Subcrustal lithosphere around the Saxothuringian-Moldanubian suture zone-a model derived from anisotropy of seismic wave velocities. Tectonophysics 332:185–199Google Scholar
  11. Becker A (2000) The Jura Mountains-an active foreland fold-and-thrust belt? Tectonophysics 321:381–406Google Scholar
  12. Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Kronich D, Huebscher H-D, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics 266:379–404Google Scholar
  13. Bergerat F (1977) La fracturation de l’avant-pays Jurassien entre la fosse de la Saône et du Rhin, analyse et essai d’interpretation dynamique. Rev Géogr Phys Géol Dynam (2)XIX(4):325–338Google Scholar
  14. Bergerat F (1987) Stress fields in the European platform at the time of Africa-Eurasia collision. Tectonics 6:99–132Google Scholar
  15. Bergerat F, Mugnier J-L, Guellec S, Trufferrt C, Cazes M, Damotte B, Roure F (1990) Extensional tectonics and subsidence of the Bresse basin: an interpretation from ECORS data. Mém Soc géol France 156:145–156Google Scholar
  16. Berggren WA, Kent DV, Swisker III CC, Aubrey MP (1995) Revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubray MP, Hardenbol J (eds) Geochronology, time scales and global stratigraphy correlation. Soc Econ Paleont Mineral Spec Publ 54(19):129–212Google Scholar
  17. Bessereau G, Guillocheau F, Huc A-Y (1995) Source rock occurrence in a sequence stratigraphic framework: the example of the Lias of the Paris Basin. In: Huc A-Y (ed) Paleogeography, paleoclimate, and source rocks. Am Assoc Petrol Geol, Studies in Geology 40:273–301Google Scholar
  18. Bijwaard H, Spakman W (1999) Tomographic evidence for a narrow mantle plume below Iceland. Earth Planet Sci Lett 166:121–126Google Scholar
  19. Blès J-L, Gros Y (1991) Stress field changes in the Rhone Valley from the Miocene to the present. Tectonophysics 194:265–277Google Scholar
  20. Boenigk W (2002) The Pleistocene drainage pattern in the Lower Rhine basin. Neth J Geosci 81:201–209Google Scholar
  21. Boigk H, Schöneich H (1970) Die Tiefenlage der Permbasis im nördlichen Teil des Oberrheingrabens. In: Illies JH, Mueller St. (eds) Graben problems. Schweizerbart’sche Verlagsbuchhandlung Stuttgart. International Upper Mantle Project, Sci Rept 27:48–55Google Scholar
  22. Bonin B (1990) From orogenic to anorogenic settings: evolution of granitoids suits after a major orogenesis. Geol J 25:260–270Google Scholar
  23. Bonin B, Brändlin P, Bussy F, Desmons J, Eggenberger U, Finger F, Graf K, Marro C, Mercolli L, Oberhänsli R, Ploquin A, von Quadt A, von Raumer J, Schaltegger U, Steyer HP (1993) Late Variscan magmatic evolution of the Alpine basement. In: von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology of the Alps. Springer, Berlin Heidelberg New York, pp 171–201Google Scholar
  24. Bousquet R, Goffé B, Henry P, Chopin Ch (1997) Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust. Tectonophysics 273:105–127Google Scholar
  25. Breitkreuz C, Kennedy A (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German basin revealed by SHRIMP zircon ages. Tectonophysics 302:307–326CrossRefGoogle Scholar
  26. Brun J-P, Gutscher M-A, DEKORP-ECORS team (1992) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data. Tectonophysics 208:39–147Google Scholar
  27. Brunnacker K, Boenigk W (1983) The Rhine Valley between the Neuwied Basin and the Lower Rhenish Embayment. In: Fuchs K, von Gehlen K, Mälzer M, Murawski H, Semmel A (eds) Plateau Uplift, The Rhenish Shield—a case history. Springer, Berlin Heidelberg New York, pp 62–72Google Scholar
  28. Bucher S, Schmid SM, Bousquet R, Fügenschuh B (2003) Late-stage deformation in a collisional orogen (Western Alps): nappe refolding, back-thrusting or normal faulting? Terra Nova 15:109–117Google Scholar
  29. Burg J-P, van den Driesschen J, Brun J-P (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géologie de la France 3:33–51Google Scholar
  30. Burkhard M, Sommaruga A (1998) Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt. In: Mascle A, Puigdefàbregas C, Luterbacher HP, Fernandez M (eds) Cenozoic Foreland Basins of Western Europe. Geol Soc London, Spec Publ 134:279–298Google Scholar
  31. Chauve P, Martin J, Petitjean E, Sequeiros F (1988) Le chevauchement du Jura sur la Bresse. Données nouvelles et réinterpretation des sondages. Bull Soc géol France 8(IV):861–870Google Scholar
  32. Cloetingh S (1988) Intra-plate stresses: a new element in basin analysis. In: Kleinspehn KL, Paola C (eds) Frontiers in sedimentary geology—new perspectives in basin analysis. Springer, Berlin Heidelberg New York, pp 205–230Google Scholar
  33. Cortesogno L, Dallagiovanna G, Gaggero L, Oggiano G, Ronchi A, Seno S, Vanossi M (1998) The Variscan post-collisional volcanism in Late Carboniferous-Permian sequences of Ligurian Alps, Southern Alps and Sardinia (Italy): a synthesis. Lithos 45:305–328CrossRefGoogle Scholar
  34. Coulon M (1992) La distension oligocène dans le nord-est du bassin de Paris (perturbation des directions d’extension et distribution des stylolites). Bull Soc géol France 163:531–540Google Scholar
  35. Coward MP (1993) The effects of Late Caledonian and Variscan escape tectonics on basement structure, Paleozoic basin kinematics and subsequent Mesozoic basin development in NW Europe. In: Parker J (ed) Petroleum geology of Northwest Europe; Proceedings of the 4th conference. Geol. Soc., London, pp 1095–1108Google Scholar
  36. Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102CrossRefGoogle Scholar
  37. Deichmann N, Ballarin Dolfin D, Kastrup U (2000) Seismizität der Nord- und Zentralschweiz. NAGRA Technischer Bericht, Wettingen, 00–05, 93 pGoogle Scholar
  38. Delouis B, Haessler H, Cisternas A, Rivera L (1993) Stress tensor determination in France and neighbouring regions. Tectonophysics 211:413–437Google Scholar
  39. Dèzes P, Ziegler PA (2002) Moho depth map of Western and Central Europe. World Wide Web Address:
  40. Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System; interaction of the Pyrenean and Alpine orogens with the foreland lithosphere. Tectonophysics 389(1-2):1–33Google Scholar
  41. Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, Central Europe. Tectonics 8:1–21Google Scholar
  42. Franke W (2000) The Mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc London, Spec Publ 179:35–62Google Scholar
  43. Fügenschuh B, Schmid SM (2003) Late stage of deformation and exhumation of an orogen constrained by fission-track data: a case study in the Western Alps. Geol Soc Am Bull 115:1425–1440Google Scholar
  44. Garcia-Castellanos D, Cloetingh S, van Balen R (2000) Modelling the middle Pleistocene uplift in the Ardennes-Rhenish Massif: thermo-mechanical weakening under the Eifel. Global Planet Changes 27:39–52Google Scholar
  45. Geluk MC, Duin EJT, Dusar M, Rijkers RHB, van den Berg MW, van Rooijen P (1994) Stratigraphy and tectonics of the Roer Valley Graben. Geol Mijnb 73:129–141Google Scholar
  46. Giamboni M, Ustaszewski K, Schmid SM, Schumacher M, Wetzel A (2003) Plio-Pleistocene deformation in the southern Upper Rhine Graben area: geological and geomorphological evidence for on-going transpressive reactivation of Paleozoic and Paleogene faults. Int J Earth Sci 93:207–223Google Scholar
  47. Giamboni M, Wetzel A, Nivière B, Schumacher M (2004) Plio-Pleistocene folding in the southern Rhinegraben recorded by the evolution of the drainage network (Sundgau area; northwestern Switzerland and France). Eclogae geol Helv 97:17–31Google Scholar
  48. Giglia G, Capponi G, Crispini L, Piazza M (1996) Dynamics and seismotectonics of the West-Alpine arc. Tectonophysics 267:143–175Google Scholar
  49. Goes S, Spakman W, Bijwaard H (1999) A lower mantle source for Central European volcanism. Science 286:1928–1930Google Scholar
  50. Goes S, Loohuis JJP, Wortel MIR, Govers R (2000a) The effect of plate stresses and shallow mantle temperatures on the tectonics of northwestern Europe. Global Planet. Change 27:23–38Google Scholar
  51. Goes S, Govers R, Vacher P (2000b) Shallow mantle temperatures under Europe from P and S wave tomography. J Geophys Res 105:11,153–11,169Google Scholar
  52. Goggin V, Jaquin T, Gaulier JM (1997) Three-dimensional accommodation analysis of the Triassic in the Paris Basin: a new approach in unravelling the basin evolution with time. Tectonophysics 281:205–232Google Scholar
  53. Gradstein FM, Ogg J (1996) A Phanerozoic time scale. Episodes 19:3–5Google Scholar
  54. Granet M, Wilson M, Achauer U (1995) Imaging mantle plumes beneath the French Massif Central. Earth Planet Sci Lett 136:199–203Google Scholar
  55. Guellec S, Mugnier J-L, Tardy M, Roure F (1990) Neogene evolution of the western Alpine foreland in the light of the ECORS data and balance cross-section. Mém Soc géol France 156:165–184Google Scholar
  56. Hahn A, Wonik T (2002) Verteilung der Magnetisierung in der Erdkruste im Gebiet Deutschlands. Geol Jb, Sh Reihe E, Heft SE 2, 35 pGoogle Scholar
  57. Haq BU, Hardenbol J, Vail P (1988) Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. Soc Econ Paleont Mineral Spec Publ 42:71–108Google Scholar
  58. Hegner F, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184Google Scholar
  59. Henk A (1993) Late orogenic basin evolution in the Variscan Internides, the Saar-Nahe Basin, Southwest Germany. Tectonophysics 223:273–290Google Scholar
  60. Heumann G, Litt Th (2002) Stratigraphy and paleoecology of the Late Pliocene and Early Pleistocene in the open-cast mine Hambach (Lower Rhine Basin). Neth J Geosci 81:193–199Google Scholar
  61. Hinzen K-G (2003) Stress field in the Northern Rhine area, Central Europe, from earthquake fault-plane solutions. Tectonophysics 377:325–356Google Scholar
  62. Hoernle K, Zhang Yu-S, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature London 374:34–39Google Scholar
  63. Illies JH, Baumann H, Hoffers B (1981) Stress pattern and strain release in the Alpine foreland. Tectonophysics 71:157–172Google Scholar
  64. Jouanne F, Ménard G, Darmendrail X (1995) Present-day vertical displacements in the north-western Alps and southern Jura: data from levelling comparisons. Tectonics 14:606–616Google Scholar
  65. Jouanne F, Genaudeau N, Ménard G, Darmendrail X (1998) Estimating present-day displacement fields and tectonic deformation in active mountain belts: an example from the Chartreuse Massif and the southern Jura Mountains, western Alps. Tectonophysics 296:403–419Google Scholar
  66. Judenherc S, Granet M, Brun J-P, Poupinet G, Plomerova J, Mocquet A, Achauer U (2002) Images of lithospheric heterogeneities in the Armorican segment of the Hercynian Range in France. Tectonophysics 358:121–134Google Scholar
  67. Jung S (1999) The role of crustal contamination during evolution of continental rift-related basalts, a case study from the Vogelsberg area Central Germany. GeoLines, Prague 9:48–58Google Scholar
  68. Keller J, Kramel M, Henjes-Kunst F (2002) 40Ar/39Ar single crystal dating of early volcanism in the Upper Rhine Graben and tectonic implications. Schweiz Mineral Petrogr Mitt 82:121–130Google Scholar
  69. Klett M, Eichhorst F, Schäfer A (2002) Facies interpretation from well logs applied to the Tertiary Lower Rhine basin fill. Neth J Geosci 81:167–176Google Scholar
  70. Kooi H, Cloetingh S, Burrus J (1992) Lithospheric necking and regional isostasy at extensional basins: Part 1. Subsidence and gravity modelling with application to the Gulf of Lions margin (SE France). J Geophys Res 97:17553–17571Google Scholar
  71. Korsch RJ, Schäfer A (1995) The Permo-Carboniferous Saar-Nahe Basin, South-west Germany and North-east France, basin formation and deformation in a strike-slip regime. Geol Rundsch 84:293–318Google Scholar
  72. Lardeaux JM, Ledru P, Daniel I, Duchène S (2001) The Variscan French Massif Central—a new addition to the ultra-high pressure metamorphic “club”: exhumation processes and geodynamic consequences. Tectonophysics 332:143–162Google Scholar
  73. Laubscher HP (1986) The eastern Jura: relations between thin-skinned and basement tectonics, local and regional. Geol Rundsch 75:535–553Google Scholar
  74. Laubscher H (1992) Jura kinematics and the Molasse Basin. Eclogae geol Helv 85:653–675Google Scholar
  75. Laubscher H (2003) The Miocene dislocations in the northern foreland of the Alps: oblique subduction and its consequences (Basel area, Switzerland-Germany). Jber Mitt oberrhein geol Ver N.F. 85:423–439Google Scholar
  76. Le Pichon X, Henry P, Goffé B (1997) Uplift of Tibet: from eclogites to granulites—implications for the Andean Plateau and the Variscan Belt. Tectonophysics 273:57–76Google Scholar
  77. Lenôtre N, Garnier T, Delfau M (1992) Mouvements verticaux actuels dans le sud-est du Massif Central. 14e RST, Toulouse, 13–14 April, 1992, 2 p (abstract)Google Scholar
  78. Lickorish WH, Ford M (1998) Sequential restoration of the external Alpine Digne thrust system, SE France, constrained by kinematic data and synorogenic sediments. In: Mascle A, Puigdefàbregas C, Luterbacher HP, Fernandez M (eds) Cenozoic Foreland Basins of Western Europe. Geol Soc London, Spec Publ 134:189–211Google Scholar
  79. Lippolt HJ (1983) Distribution of volcanic activity in space and time. In: Fuchs K, von Gehlen K, Mälzer M, Murawski H, Semmel A (eds) Plateau Uplift, The Rhenish Shield—a case history. Springer, Berlin Heidelberg New York, Heidelberg, New York, Tokyo, pp 112–120Google Scholar
  80. Littke R, Bücker C, Hertle M, Karg H, Stroetmann-Heinen V, Oncken O (2000) Heat flow evolution, subsidence and erosion in the Rheno-Hercynian orogenic wedge of central Europe. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc, London, Spec Publ 179:231–255Google Scholar
  81. de Lugt IR, van Wees JD, Wong ThE (2003) The tectonic evolution of the southern Dutch North Sea during the Paleogene: basin inversion in distinct pulses. Tectonophysics 373:141–159Google Scholar
  82. Malkovsky M (1987) The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137:31–42Google Scholar
  83. Mälzer H, Hein G, Zippelt K (1983) Height changes in the Rhenish Massif: determination and analysis. In: Fuchs K, von Gehlen K, Mälzer M, Murawski H, Semmel A (eds) Plateau uplift, The Rhenish Shield - a case history. Springer, Berlin Heidelberg New York, pp 165–176Google Scholar
  84. Martinod J, Jouanne F, Taverna J, Ménard G, Gamond J-F, Darmendrail X, Notter J-C, Basil C (1996) Present-day deformation of the Dauphiné Alpine and Subalpine massifs (SE France). Geophys J Int 127:189–200Google Scholar
  85. Marx J, Huebscher H-D, Hoth K, Korich D, Kramer W (1995) Vulkanostratigraphie und Geochemie der Eruptivekomplexe. In: Plein E (ed) Norddeutsches Rotliegendbecken. Courier Forschungsinstitut Senkenberg 183:54–83Google Scholar
  86. McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32Google Scholar
  87. Meissner R, Bortfeld RK (eds) (1990) DEKORP-Atlas, results of Deutsches Kontinentales Reflexionsseismisches Programm. Springer, Berlin Heidelberg New York, 18 p. and 80 platesGoogle Scholar
  88. Meissner R, Rabbel W (1999) Nature of crustal reflectivity along the DEKORP profiles in Germany in comparison with reflection patterns from different tectonic units worldwide: a review. Pure Appl Geophys 156:7–28Google Scholar
  89. Mengel K (1992) Evidence from xenoliths for the composition of the lithosphere. In: Blundell D, Freeman R, Müller St (eds) A continent revealed, the European Geotraverse. Cambridge University Press, Cambridge, pp. 91–102Google Scholar
  90. Menning M (1995) A numerical time scale for the Permian and Triassic periods: an integrated time analysis. In: Scholle PA, Peryth TM, Ulmer-Scholle DS (eds) The Permian of Northern Pangea. Springer, Berlin Heidelberg New York, Vol. 1: pp. 77–97Google Scholar
  91. Menning M, Weyer D, Drozodzewski G, van Ameron HWJ, Wendt I (2000) A Carboniferous time scale 2000: discussion and use of geological parameters as time indicators from Central and Western Europe. Geol Jb A 156:3–44Google Scholar
  92. Merle O, Michon L (2001) The formation of the West-European Rift: a new model exemplified by the Massif Central area. Bull Soc géol France 172:213–221Google Scholar
  93. Merle O, Michon L, Camus G, de Goer A (1998) L’extension oligocène sur la transversale septentrionale du rift du Massif Central. Bull Soc géol France 109:615–626Google Scholar
  94. Meyer W, Stets J (2002) Pleistocene to Recent tectonics in the Rhenish Massif (Germany). Neth J Geosci 81:217–221Google Scholar
  95. Michon L, Merle O (2001) The evolution of the Massif Central rift: spatio-temporal distribution of the volcanism. Bull Soc géol France 172:201–211Google Scholar
  96. Michon L, van Balen RT, Merle O, Pagnier H (2003) The Cenozoic evolution of the Roer Valley rift system integrated at a European scale. Tectonophysics 367:101–126CrossRefGoogle Scholar
  97. Müller B, Wehrle V, Zeyen H, Fuchs K (1997) Short-scale variations of tectonic regimes in the western European stress province north of the Alps and Pyrenees. Tectonophysics 275:199–219Google Scholar
  98. Müller WH, Naef H, Graf HR (2002) Geologische Entwicklung der Nordwestschweiz, Neotektonik und Langzeitszenarien Zürcher Weinland. NAGRA Technischer Bericht, Wettingen, 99–08:237 pGoogle Scholar
  99. Neumann E-R,Olsen KH Baldridge S (1995) The Oslo Rift. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Elsevier, Amsterdam, pp 345–373Google Scholar
  100. Neumann E-R, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous Magmatism and Rifting in Europe. Geol Soc, London, Spec Publ 223:11–40Google Scholar
  101. Oncken O, Plesch A, Weber J, Ricken W, Schrader S (2000) Passive margin detachment during arc-continent collision (Central European Variscides) In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc, London Spec Publ 179:199–216Google Scholar
  102. Philippe Y, Colletta B, Deville E, Mascle A (1996) The Jura fold-and-thrust belt: a kinematic model based on map-balancing. In: Ziegler PA, Horvàth F (eds) Structure and prospects of Alpine basins and forelands. Peri-Tethys Mem. 2. Mém. Mus. natn. Hist. nat., Paris, 170:235–261Google Scholar
  103. Philippe Y, Deville E, Mascle A (1998) Thin-skinned inversion tectonics at oblique basin margins: example of the western Vercors and Chartreuse subalpine massifs (SE France). In: Mascle A, Puigdefàbregas C, Luterbacher HP, Fernandez M (eds) Cenozoic Foreland Basins of Western Europe. Geol Soc, London, Spec Publ 134:239–262Google Scholar
  104. Plenefisch T, Bonjer K-P (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimations of frictional parameters. Tectonophysics 275:71–97CrossRefGoogle Scholar
  105. Prijac C, Doin MP, Gaulier JM, Guillaucheau F (2000) Subsidence of the Paris Basin and its bearing on the late Variscan lithosphere evolution: a comparison between the Plate and Chablis models. Tectonophysics 323:1–38Google Scholar
  106. Prodehl C, Mueller St, Haak V (1995) The European Cenozoic rift system. In: Olsen KH (ed) Continental Rifts: Evolution, Structure, Tectonics. Elsevier, Amsterdam, Lausanne, New York, Developments in Geotectonics 25:133–212Google Scholar
  107. von Raumer JE (1998) The Palaeozoic evolution in the Alps: from Gondwana to Pangea. Geol Rundsch 87:407–435Google Scholar
  108. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14Google Scholar
  109. Roca E (2001) The Northwest Mediterranean Basin (Valencia Trough, Gulf of Lions, and Liguro-Provençal basins): structure and geodynamic evolution. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém. Mus. natn. Hist. nat., Paris, 186:617–706Google Scholar
  110. Roll A (1979) Versuch einer Volumenbilanz des Oberrheingrabens und seiner Schultern. Geol. Jb. Reihe A, Heft 52:82 pGoogle Scholar
  111. Roure F, Colletta B (1996) Cenozoic inversion structures in the foreland of the Pyrenees and Alps. In: Ziegler PA, Horvàth F (eds) Structure and Prospects of Alpine Basins and Forelands. Peri-Tethys Mem. 2, Mém. Mus. natn. Hist. nat., Paris, 170:173–209Google Scholar
  112. Roure F, Brun J-P, Colletta B, Vially R (1994) Multiphase extensional structures, fault reactivation, and petroleum plays in the Alpine foreland Basin of southeastern France. In: Mascle A (ed) Hydrocarbon and Petroleum Geology of France. Springer, Berlin Heidelberg New York, Europ. Assoc. Petrol. Geosci., Spec. Publ. 4:245–268Google Scholar
  113. Royden L, Keen CE (1980) Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet Sci Lett 51:343–361Google Scholar
  114. Sanchis E, Séranne M (2000) Structural style and tectonic evolution of a polyphase extensional basin of the Gulf of Lion passive margin: the Tertiary Alès basin, southern France. Tectonophysics 322:219–242Google Scholar
  115. Schäfer F, Oncken O, Kemnitz H, Romer R (2000) Upper-plate deformation during collisional orogeny: a case study from the German Variscides (Saxo-Thuringian Zone). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol Soc, London, Spec Publ 179:281–302Google Scholar
  116. Schmid SM, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85CrossRefGoogle Scholar
  117. Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 12:1036–1064Google Scholar
  118. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclog geol Helv 97:93–117Google Scholar
  119. Schumacher ME (2002) Upper Rhine Graben: the role of pre-existing structures during rift evolution. Tectonics 21:10.1029/2001TC900022 (6-1-6-17)CrossRefGoogle Scholar
  120. Sclater JG, Christie PAF (1980) Continental stretching, an explanation of the post-Mid-Cretaceous subsidence of the Central North Sea basin. J Geophys Res 85:3711–3739Google Scholar
  121. von Seckendorff V, Arz C, Lorenz V (2004) Magmatism of the late Variscan intramontane Saar-Nahe Basin (Germany): a review, In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous Magmatism and Rifting in Europe. Geol Soc, London, Spec Publ 223:361–391Google Scholar
  122. Séranne M (1999) The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand B, Jolivet L, Horvàth F, Séranne M (eds) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geol. Soc., London, Spec. Publ. 156:15–36Google Scholar
  123. Seyferth M, Henk A (2000) Deformation, metamorphism and exhumation: quantitative models for a collision zone in the Variscides. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol Soc, London Spec Publ 179:217–230Google Scholar
  124. Sissingh W (1998) Comparative tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300:249–284CrossRefGoogle Scholar
  125. Sissingh W (2001) Tectonostratigraphy of the West Alpine Foreland: correlation of tertiary sedimentary sequences, changes in eustatic sea-level and stress regimes. Tectonophysics 333:361–400Google Scholar
  126. Sissingh W (2003) Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeogr Palaeoclim Palaeoecol 196:229–263Google Scholar
  127. Sobolev SV, Zeyen H, Granet M, Achauer U, Bauer C, Werling F, Altherr R, Fuchs K (1997) Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics 275:143–164Google Scholar
  128. Stampfli GM (1993) Le Briançonnais, terrain exotique dans les Alpes? Eclog geol Helv 86:1–45Google Scholar
  129. Stampfli GM, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction processes in the Alps. Tectonophysics 296:159–204CrossRefGoogle Scholar
  130. Stampfli GM, Mosar J, Favre P, Pillevuit A, Vannay J-C (2001) Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East-Mediterranean connection. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Mem. 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém. Mus. natn. Hist. nat. 186:51–108Google Scholar
  131. Stollhofen H, Stanistreet IG (1994) Interaction between bimodal volcanism, fluvial sedimentation and basin development in the Permo-Carboniferous Saar-Nahe Basin (South-West Germany). Basin Res 6:245–267Google Scholar
  132. Thomson SN, Zeh A (2000) Fission-track thermochronology of the Ruhla crystalline complex: new constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324:17–35Google Scholar
  133. Ulrych J, Pivec E, Lang M, Balogh K, Kropacek V (1999) Cenozoic intraplate volcanic rocks series of the Bohemian Massif: a review. GeoLines Prague 9:123–129Google Scholar
  134. Vanderhaeghe O, Teyssier C (2001) Partial melting and flow of orogens. Tectonophysics 342:451–472Google Scholar
  135. Vergés,J, García-Senez J (2001) Mesozoic evolution and Cainozoic inversion of the Pyrenean rift. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Mem. 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém Mus natn Hist nat 186:187–212Google Scholar
  136. Vigneresse JL (1999) Intrusion level of granitic massifs along the Hercynian belt: balancing the eroded crust. Tectonophysics 307:277–295Google Scholar
  137. Villemin T, Alvarez F, Angelier J (1986) The Rhine-graben, extension, subsidence and shoulder uplift. Tectonophysics 128:47–59CrossRefGoogle Scholar
  138. Weber K (1995a) Structural relationship between Saar-Nahe Basin, Odenwald, and Spessart Mts. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin Heidelberg New York, pp 182–185Google Scholar
  139. Weber K (1995b) The Saar-Nahe Basin. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin Heidelberg New York, pp 186–189Google Scholar
  140. van Wees J-D, Stephenson RA (1995) Quantitative modelling of basin and rheological evolution of the Iberian Basin (Central Spain): implications for lithosphere dynamics of intraplate extension and inversion. Tectonophysics 252:163–178Google Scholar
  141. van Wees J-D, de Jong K, Cloetingh S (1992) Two-dimensional P-T-t modelling and dynamics of extension and inversion in the Betic Zone (SE Spain). Tectonophysics 203:305–324Google Scholar
  142. van Wees J-D, Stephenson RA, Stovba SM, Shymanovski S (1996) Tectonic variation in the Dniepr-Donets Basin from automatic modelling of backstripped subsidence curves. Tectonophysics 268:257–280Google Scholar
  143. van Wees J-D, Stephenson RS, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Nerkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59Google Scholar
  144. Wetzel A, Allenbach R, Allia V (2003) Reactivated basement structures affecting the sedimentary facies in a tectonically “quiescent” epicontinental basin: an example from NW Switzerland. Sediment Geol 157:153–172Google Scholar
  145. Wilson M, Rosenbaum JM, Dunworth EA (1995) Melilites: partial melts of the thermal boundary layer?. J Petrol 32:181–196Google Scholar
  146. Zeh A, Brätz H (2004) Timing of Upper Carboniferous-Permian horst-basin formation and magmatism in the NW Thuringian Forest, central Germany: a review. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous Magmatism and Rifting in Europe. Geol Soc, London, Spec Publ 223:319–334Google Scholar
  147. Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the Western Tethys. Am Assoc Petrol Geol Mem 43:198Google Scholar
  148. Ziegler PA (1989) Evolution of Laurussia, a study in Late Palaeozoic plate tectonics. Kluver Acad. Publ., Dordrecht, 102 p. 14 platesGoogle Scholar
  149. Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd edn. Shell Internat. Petrol. Mij., dist. Geol. Soc. Publ. House, Bath, 239 p. 56 encl.Google Scholar
  150. Ziegler PA (1994) Cenozoic rift system of western and central Europe: an overview. Geol Mijnb 73:99–127Google Scholar
  151. Ziegler PA, Dèzes P (2005) Crustal evolution of western and central Europe. In: Gee D, Stephenson R (eds) European lithosphere dynamics. Mem Geol Soc London (submitted)Google Scholar
  152. Ziegler PA, Stampfli GM (2001) Late Palaeozoic–Early Mesozoic plate boundary reorganization: collapse of the Variscan orogen and opening of Neotethys. In: Cassinis G (ed) Permian continental deposits of Europe and other areas. Regional reports and Correlations. Natura Bresciana Ann Mus Civ Sc Nat, Brescia Monogr N 25:17–34Google Scholar
  153. Ziegler PA, Cloetingh S, van Wees J-D (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59CrossRefGoogle Scholar
  154. Ziegler PA, van Wees J-D, Cloetingh S (1998) Mechanical controls on collision-related compressional intraplate deformation. Tectonophysics 300:103–129Google Scholar
  155. Ziegler PA, Cloetingh S, Guiraud R, Stampfli GM (2001) Peri-Tethyan platforms: constraints on dynamics of rifting and basin inversion. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds) Peri-Tethys Mem. 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém Mus natn Hist nat 186:9–49Google Scholar
  156. Ziegler PA, Bertotti G, Cloetingh S (2002) Dynamic processes controlling foreland development: the role of mechanical (de)coupling of orogenic wedges and forelands. In: Bertotti G, Schulmann K, Cloetingh S (eds) Continental Collision and the Tectono-Sedimentary Evolution of Forelands. Europ Geophys Soc Stephan Mueller Spec Publ 1:29–91Google Scholar
  157. Ziegler PA, Schumacher ME, Dèzes P, van Wees J-D, Cloetingh S (2004) Post-Variscan evolution of the lithosphere in the Rhine Graben area: constraints from subsidence modelling. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous Magmatism and Rifting in Europe. Geol Soc, London, Spec Publ 223:289–317Google Scholar
  158. Zielhuis A, Nolet G (1994) Deep seismic expression of an ancient plate boundary in Europe. Science 265:79–81Google Scholar
  159. Zijerveld L, Stephenson R, Cloetingh S, Duin E, van den Berg MW (1992) Subsidence analysis and modelling of the Roer Valley Graben (SE Netherlands). Tectonophysics 208:159–171Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Geosciences, Geological-Palaeontological InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations