International Journal of Earth Sciences

, Volume 95, Issue 3, pp 431–450

Jurassic strike slip versus subduction in the Eastern Alps

Original Paper

Abstract

Late Jurassic formations of the Northern Calcareous Alps (NCA) contain ample evidence of synsedimentary tectonics in the form of elongate basins filled with turbidites, debris flows and slumps. Clasts are derived from the Mesozoic of the NCA; they commonly measure tens of metres in diameter and occasionally form kilometre-size bodies. These sedimentologic observations and the presumed evidence of Late Jurassic high-pressure metamorphism recently led to the hypothesis of a south-dipping Jurassic subduction zone with accretionary wedge in the southern parts of the NCA. We present new 40Ar/39Ar dates from the location of the postulated high-pressure metamorphism that bracket the age of this crystallization not earlier than 114–120 Ma. The event is therefore part of the well-documented mid-Cretaceous metamorphism of the Austro-alpine domain. Thus, there is currently no evidence of Late Jurassic high-pressure metamorphism to support the subduction hypothesis. The sediment record of the Late Jurassic deformation in the NCA, including the formation of local thrust sheets, is no conclusive evidence for subduction. All these phenomena are perfectly compatible with synsedimentary strike-slip tectonics. Large strike-slip fault zones with restraining and releasing bends and associated flower structures and pull-apart basins are a perfectly viable alternative to the subduction model for the Late Jurassic history of the NCA. However, in contrast to the Eastern Alps transect, where arguments for a Jurassic subduction are missing, a glaucophane bearing Jurassic high-pressure metamorphism in the Meliatic realm of the West Carpathians is well documented. There, the high-pressure/low-temperature slices occur between the Gemeric unit and the Silica nappe system (including the Aggtelek-Rudabanya units), which corresponds in facies with the Juvavic units in the southern part of the NCA. To solve the contrasting palaeogeographic reconstructions we propose that the upper Jurassic left lateral strike-slip system proposed here for the Eastern Alps continued eastwards and caused the eastward displacement of the Silica units into the Meliatic accretionary wedge.

References

  1. Anadon P, Cabrera L, Guimera J, Santanach P (1985) Paleogene strike-slip deformation and sedimentation along the southeastern margin of the Ebro Basin. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation, and sedimentation. Soc Econ Paleont Miner Spec Publ 37:303–318Google Scholar
  2. Bernoulli D (1972) North Atlantic and Mediterranean Mesozoic facies: a comparison. Init Rep Deep Sea Drill Proj 11:801–871Google Scholar
  3. Bertotti G, Seward D, Wijbrans J, Ter Voorde M, Hurford AJ (1996) Crustal thermal regime prior to, during and after rifting: a geochronological and modelling study of the Mesozoic South Alpine rifted margin. Tectonics 18:185–200CrossRefGoogle Scholar
  4. Braun D (1998) Die Geologie des Hohen Gölls. Forschungsber Nationalpark Berchtesgaden 40:1–192Google Scholar
  5. Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) (2004) The TRANSMED Atlas—the Mediterranean Region from Crust to Mantle. Springer, Berlin Heidelberg New York, p 141Google Scholar
  6. Cemen I, Wright LA, Drake RC, Johnson FC (1985) Cenozoic sedimentation and sequence of deformational events at the southeastern end of the Furnace Creek strike slip fault zone, Death Valley Region, California. Soc Sediment Geol Spec Publ 37:128–141Google Scholar
  7. Channell JET, Brandner R, Spieler A, Smathers NP (1990) Mesozoic paleogeography of the Northern Calcareous Alps—evidence from paleomagnetism and facies analysis. Geology 18:828–831CrossRefGoogle Scholar
  8. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeo 210:1–56CrossRefGoogle Scholar
  9. Decker K, Faupl P, Müller A (1987) Synorogenic sedimentation on the Northern Calcareous Alps during the Early Cretaceous. In: Flügel H, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Vienna, pp 126–141Google Scholar
  10. Dallmeyer RD, Neubauer F, Putis M (1993) 40Ar/39Ar mineral age control for the Pre-Alpine and Alpine tectonic evolution of nappe complexes in the Western Carpathians. In: Pitonak P, Spisiak J (eds) Pre-Alpine events in the Western Carpathians Realm, pp 11–20Google Scholar
  11. Dal Piaz GV, Martin S, Villa IM, Gosso G, Marschalko R (1995) Late Jurassic blueschist facies pebbles from the Western Carpathian orogenic wedge and palaeostructural implications for Western Tethys evolution. Tectonics 14:874–885CrossRefGoogle Scholar
  12. De Smet MEM (1984a) Investigations of the Crevillente Fault Zone and its role in the tectogenesis of the Betic Cordilleras, southern Spain. PhD Thesis, Vrije Univ Printing Office, Amsterdam, pp 1–174Google Scholar
  13. De Smet MEM (1984b) Wrenching in the external zone of the Betic Cordilleras, southern Spain. Tectonophysics 107:57–79CrossRefGoogle Scholar
  14. Dewey JF, Pitman WC, Ryan WBF, Bonin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  15. Diersche V (1980) Die Radiolarite des Oberjura im Mittelabschnitt der Nördlichen Kalkalpen. Geotekt Forsch 58:1–217Google Scholar
  16. Faryad SW (1995) Phase petrology and P-T conditions of mafic blueschists from Meliata unit, West Carpathians, Slovakia. J Metam Geol 13:701–714CrossRefGoogle Scholar
  17. Faryad SW, Schreyer W (1996) Petrology and geological significance of high-pressure metamorphic rocks occurring as pebbles in the Cretaceous conglomerates of the Klippen belt (West Carpathians, Slovakia). Eur J Miner 9:547–562Google Scholar
  18. Faryad SW, Henjes Kunst F, (1997) Petrological and K-Ar and 40Ar/39Ar age constraints for tectonothermal evolution of the high pressure Meliata unit Western Carpathians (Slovakia). Tectonophysics 280:141–156CrossRefGoogle Scholar
  19. Faupl P, Wagreich M (2000) Late Jurassic to Eocene paleogeography and geodynamic evolution of the Eastern Alps. Mitt Österr Geol Ges 92:79–94Google Scholar
  20. Fischer AG (1965) Eine Lateralverschiebung in den Salzburger Kalkalpen. Verh Geol Bundesanstalt 20–33Google Scholar
  21. Frank W (1987) Evolution of the Austroalpine elements in the Cretaceous. In: Flügel H, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Vienna, pp 379–406Google Scholar
  22. Frimmel H, Frank W (1996) Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa. Precamb Res 90:1–28CrossRefGoogle Scholar
  23. Frisch W, Gawlick HJ (2001) The tectonic evolution of the central Northern Calcareous Alps. Geol Paläont Mitt Innsbruck 25:85–87Google Scholar
  24. Frisch W, Gawlick HJ (2003) The nappe structure of the Central Northern Alps and its disintegration during Miocene tectonic extrusion: a contribution to understanding the orogenic evolution of the Eastern Alps. Int J Earth Sci 92:712–727Google Scholar
  25. Garrison RE, Fischer AG (1969) Deep-water limestones and radiolarites of the Alpine Triassic. Soc Econ Paleont Mineral Spec Publ 14:20–56Google Scholar
  26. Gawlick HJ (1996) Die früh-oberjurassischen Brekzien der Strubbergschichten im Lammertal—analyse und tektonische Bedeutung (Nördliche Kalkalpen, Österreich). Mitt Ges Geol Bergbaustud Österr 39/40:119–186Google Scholar
  27. Gawlick HJ, Höpfer N (1996) Die mittel- bis früh-oberjurassische Hochdruckmetamorphose der Hallstätter Kalke (Trias) der Pailwand—ein Schlüssel zum Verständnis der frühen Geschichte der Nördlichen Kalkalpen. Schriftenreihe deutsch Geol Ges 1:30–32Google Scholar
  28. Gawlick HJ, Frisch W, Vecsei A, Steiger T, Böhm F (1999) The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geol Rundsch 87:644–657CrossRefGoogle Scholar
  29. Gawlick HJ, Diersche V (2000) Die Radiolaritbecken in den Nördlichen Kalkalpen (hoher Mittel-Jura, Ober-Jura). Mitt Ges Geol Bergbaustud Österr 44:97–156Google Scholar
  30. Haas J, Kovacs S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40CrossRefGoogle Scholar
  31. Haas J (ed) (2001) Geology of Hungary. Eötvös Univ Press, Budapest, pp 1–317Google Scholar
  32. Habler G, Thöni M (2001) Preservation of Permo-Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria). J metam Geol 19:679–697Google Scholar
  33. Hamilton W (1981) Die Hallstätter Zone des östlichen Lammertales und ihre geologische Beziehungen zum Tennengebirgstirolikum (Nördliche Kalkalpen, Salzburg). Ph.D. Diss Univ Wien 1981 pp 1–226Google Scholar
  34. Hejl E (1984) Geochronologische und petrologische Beiträge zur Gesteinsmetamorphose der Schladminger Tauern. Mitt Ges Geol Bergbaustud Österr 30/31:289–318Google Scholar
  35. Hunziker JC (1987) Radiogenic isotopes in low-grade metamorphism. In: Frey M (ed) Low temperature metamorphism. Blackie, Glasgow, pp 200–226Google Scholar
  36. Jansa LF, Enos P, Tucholke BF, Gradstein FM, Sheridan RE (1979) Mesozoic-Cenozoic sedimentary formations of the North American Basin, Western North Atlantic. In: Talwani M, Hay WW, Ryan WBF (eds) Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment. Am Geophys Union, Washington, pp 1–57Google Scholar
  37. Kirchner EC (1980) Vulkanite aus den Permoskyth der Nördlichen Kalkalpen und Ihre Metamorphose. Mitt Österr Geol Ges 71/72:385–396Google Scholar
  38. Kozur H, Mostler H (1992) Erster paläontologischer Nachweis von Meliatikum und Süd- rudabanyaicum in den Nördlichen Kalkalpen (Österreich) und ihre Beziehungen zu den Abfolgen in den westkarpaten. Geol Paläont Mitt Innsbruck 18:87–129Google Scholar
  39. Kralik M, Klima K, Riedmüller G (1987a) Dating fault gauges. Nature 327:315–317CrossRefGoogle Scholar
  40. Kralik M, Krumm J, Schramm JM (1987b) Lowgrade and very lowgrade metamorphism in the Northern Calcareous Alps and in the Graywacke Zone: Illite-crystallinity Data and Isotopic ages. In: Flügel H, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Wien, pp 165–178Google Scholar
  41. Kralik M, Schramm JM (1994) Illit-Wachstum: Übergang Diagenese—Metamorphose in Karbonat- und Tongesteinen der Nördlichen Kalkalpen: Mineralogie und Isotopengeologie (Rb-Sr, K-Ar, und C-O). Jahrb Geol Bundesanstalt 137:105–137Google Scholar
  42. Lein R, (1987) Evolution of the Northern Calcareous Alps during Triassic times. In: Flügel H, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke, Wien, pp 85–102Google Scholar
  43. Laubscher HP, Bernoulli D (1977) Mediterranen and Tethys. In: Nairn AEM, Kanes WH, Stehli FG (eds) The ocean basins and margins 4A. Plenum, New York, pp 1–28Google Scholar
  44. Maluski H, Rajlich P, Matte Ph (1993) 40Ar-39Ar dating of Inner Carpathian Variscan basement and Alpine overprinting. Tectonophysics 223:313–337CrossRefGoogle Scholar
  45. Manatschal G, Bernoulli D (1999) Architecture and tectonic evolution of nonvolcanic margins: present-day Galicia and ancient Adria. Tectonics 18:1099–1119CrossRefGoogle Scholar
  46. Mandl G (1982) Jurassische Gleittektonik im Bereich der Hallstätter Zone zwischen Bad Ischl und Bad Aussee (Salzkammergut Österreich). Mitt Ges Geol Bergbaustud Österr 28:55–76Google Scholar
  47. Mandl G, Holzer HL, Lobitzer H, Piros O (1987) Das kalkalpine Stockwerk in der Dachstein Region. In: Matura A (ed) Arbeitstagung der Geologischen Bundesanstalt. Geol Bundesanst, Wien Blatt 127/Schladming, pp 46–85Google Scholar
  48. Mandl G (2000) The Alpine sector of the Tethyan shelf—examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österr Geol Ges 92:61–77Google Scholar
  49. Mandl G, Ondrejickova A (1991) Über eine triadische Tiefwasserfazies (Radiolarite, Tonschiefer) in den Nördlichen Kalkalpen—ein Vorbericht. Jahrb Geol Bundesanstalt 136:841–871Google Scholar
  50. Mazzoli C, Vozarova A (1998) Subduction related processes in the Borka nappe (Inner Western Carpathians): a geochemical and petrological approach. In: Rakus M (ed) Geodynamic development of the Western Carpathians. D Stur Publ, Bratislava, pp 89–106Google Scholar
  51. Mello J, Elecko M, Pristas J, Reichwalder P, Snopko L, Vass D, Vozarova A (1996) Geological map of the Slovensky Kras Mts. 1:50.000 (with short English expl). Geological Survey Slovak Republic, BratislavaGoogle Scholar
  52. Mello J, Elecko M, Pristas J, Reichwalder P, Snopko L, Vass D, Vozarova A, Gaal L, Hanzel V, Hok J, Kovac P, Slavkay M, Steiner A (1997) Explanations to the geological map of Slovensky Kras area 1:50.000 (in Slovak, English summary). Publ D Stur Inst, Bratislava, pp 1–255Google Scholar
  53. Mello J, Reichwalder P, Vozarova A (1998) Borka nappe: high-pressure relic from the subduction–accretion prism of the Meliata ocean (Inner West Carpathians, Slovakia). Slovak Geol Mag 4:261–273Google Scholar
  54. Miller Ch, Thöni M, (1997) Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): new geochronological, geochemical and petrological data. Chem Geol (Isotope Geosci Section) 37:283–310Google Scholar
  55. Missoni S, Schlagintweit F, Suzuki H, Gawlick HJ (2001) Die oberjurassische Karbonatplattformentwicklung im Bereich der Berchtesgadener Kalkalpen (Deutschland)—eine Rekonstruktion auf der Basis von Untersuchungen polymikter Brekzienkörper in pelagischen Kieselsedimenten (Sillenkopf-Formation). Zentralbl Geol Paläont I/2000:117–143Google Scholar
  56. Neubauer F, Hilberg S, Handler R, Topa D (1999) Evidence for Jurassic subduction in the Northern Calcareous Alps: the tale of the Florianikogel Formation. In: 4th Workshop on Alpine Geological Studies. Tübinger Geowiss Arb p 52Google Scholar
  57. Neubauer F, Gensser J, Handler R (2000) The Eastern Alps: results of a two-stage collision process. Mitteil Österr Geol Ges 92:117–134Google Scholar
  58. Nilsen TH, McLaughlin RJ (1985) Comparison of tectonic framework and depositional patterns of the Hornelen strike-slip basin of Norway and the Ridge and Little Sulphur Creek strike-slip basins of California. In: Biddle KT , Christie-Blick N (eds) Strike-slip deformation, basin formation, and sedimentation. Soc Econ Paleont Miner Spec Publ 37:79–103Google Scholar
  59. Oxburgh ER (1974) Eastern Alps. In: Spencer AM (ed) Mesozoic-Cenozoic orogenic belts. Geological Society, London, pp 109–126Google Scholar
  60. Platt JP (1986) Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. Geol Soc Am Bull 97:1037–1053CrossRefGoogle Scholar
  61. Plasienka D (1998) Palaeotectonic evolution of the Central Western Carpathians during Jurassic and Cretaceous. In: Rakus M (ed) Geodynamic development of the Western Carpathians. Geol Survey Slovak Republic, Bratislava, pp 107–130Google Scholar
  62. Plöchinger B (1990) Erläuterungen zu Blatt 94 Hallein. Geol Bundesanstalt, Wien, pp 1–76Google Scholar
  63. Plöchinger B (1995) Tectonics of the Northern Calcareous Alps: a review. Mem Sci Geol 47:73–86Google Scholar
  64. Rakus M, Potfaj M, Vozarova A (1998) Basic paleogeographic and paleotectonic units of Western Carpathians. In: Rakus M (ed) Geodynamic development of the Western Carpathians. Geol Survey Slovak Republic, Bratislava, pp 15–26Google Scholar
  65. Ratschbacher L, Frisch W, Linzer HG, Merle O (1991) Lateral extrusion in the Eastern Alps. Tectonics 10:257–271CrossRefGoogle Scholar
  66. Rossner R (1972) Die Geologie des nordwestlichen St. Martiner Schuppenlandes am Südostrand des Tennengebirges (Ober-Ostalpin). Erlanger geol Abh 89:1–55Google Scholar
  67. Sanz de Galdeano C (1983) Los accidentes y fracturas principales de las Cordilleras Beticas. Estudios Geol 39:157–165Google Scholar
  68. Schäffer G, Steiger T (1986) Der Jura zwischen Salzburg und Bad Ausee—Stratigraphie und Gleitmassen in Tiefwasser-Sedimenten der Nördlichen Kalkalpen. Exkursionsführer Subkomm Jura-Stratigraphie München pp 1–67Google Scholar
  69. Schaltegger U, Desmurs L, Manatschal G, Müntener O, Meier M, Frank M, Bernoulli D (2002) The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova 14:156–162CrossRefGoogle Scholar
  70. Schlager W, Schlager M (1973) Clastic sediments associated with radiolarites (Tauglbodenschichten, Upper Jurassic, Eastern Alps). Sedimentology 20:65–89CrossRefGoogle Scholar
  71. Schmid SM, Rück P, Schreurs G (1990) The significance of the Schams nappe for reconstruction of the paleotectonic and orogenic evolution of the Penninic zone along the NFP-20 traverse. In: Roure F, Heizmann P, Polino R (eds) Deep structure of the Alps. Mem Soc Geol France 156, Mem Soc Geol Suisse 1, vol spec Soc Geol Ital 1:263–288Google Scholar
  72. Schmid SM, Pfiffner OA, Schreurs G (1997) Rifting and collision in the Penninic zone of eastern Switzerland. In: Pfiffner OA (ed) Deep structure of Switzerland. Birkhaeuser, Basel, pp 160–185Google Scholar
  73. Schmid SM, Fügenschuh R, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Ecl Geol Helv 97: 93–117CrossRefGoogle Scholar
  74. Schuster R, Frank W (2000) Metamorphic evolution of the Austroalpine units east of the Tauern Window: indications for Jurassic strike slip tectonics. Mitt Geol Bergbau Stud Österr 42:37–58Google Scholar
  75. Schuster R, Scharbert S, Abart R, Frank W (2001) Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine—Southalpine realm. Mitt Geol Bergbau Stud Österr 44:111–141Google Scholar
  76. Schuster R, Thöni M (1996) Permian garnet: indications for a regional Permian metamorphism in the southern part of the Austroalpine basement units. Mitt Österr Miner Ges 141:219–221Google Scholar
  77. Schweigl J, Neubauer F (1997) Structural development of the Eastern Alps: Significance for the Jurassic to Tertiary geodynamics in the Alps. Ecol Geol Helv 60/2:303–323Google Scholar
  78. Spötl Ch, Kunk MJ, Ramseyer K, Longstaff FJ (1998) Authigenic patassium feldspar: a tracer for the timing of palaeofluid flow in carbonate rocks, Northern Calcareous Alps, Austria. In: Parnell J (ed) Dating and duration of fluid flow and fluid–rock interaction. Geological Society London Spec Publ 144:107–128Google Scholar
  79. Spötl Ch, Longstaffe FJ, Ramseyer K, Rüdiger B (1999) Authigenic albite in carbonate rocks—a tracer for deep-burial brine migration? Sedimentology 46:649–666CrossRefGoogle Scholar
  80. Stampfli GM, Marchant RH (1997) Geodynamic evolution of the Tethyan margins. In: Pfiffner OA, Lehner P, Heitzman P, Mueller St, Steck A (eds) Results of NRP 20. Birkhäuser, Basel, pp 223–239Google Scholar
  81. Steel R., Gloppen TG (1980) Late Caledonian (Devonian) basin formation, western Norway: signs of strike-slip tectonics during infilling. Intl Assoc Sedim Spec Publ 4:79–103Google Scholar
  82. Steel R, Gjelberg J, Helland-Hansen W, Kleinspehn K, Nøttvedt A, Rye-Larsen M (1985) The Tertiary strike-slip basins and orogenic belt of Spitsbergen. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation, and sedimentation. Soc Econ Paleont Miner Spec Publ 37:339–360Google Scholar
  83. Trümpy R (1988) A possible Jurassic-Cretaceous transform system in the Alps and the Carpathians. Geol Soc Am Spec Paper 218:93–109Google Scholar
  84. Thöni M (1999) A review of geochronological data from the Eastern Alps. Schweiz Min Pet Mitt 79:209–230Google Scholar
  85. Thöni M (2002a) Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for Sm-Nd garnet chronometry. Chem Geol 185: 255–281CrossRefGoogle Scholar
  86. Thöni M (2002b) Garnet chronometry in the Eastern Alps: insight into the polyphase nature of a composite orogenic structure. Mem.Sci.Geol 54:163–166Google Scholar
  87. Thöni M, Jagoutz E (1993) Isotopic constraints for eo-Alpine, high-P metamorphism in the Austroalpine nappes of the Eastern Alps: its bearing on Alpine orogenesis. Schweiz Min Petr Mitt 73:177–189Google Scholar
  88. Tollmann A (1987) Late-Jurassic/Neocomian gravitational tectonics in the Northern Calcareous Alps in Austria. In: Flügel H, Faupl P (eds). Geodynamics of the Eastern Alps. Deuticke, Wien, pp 112–125Google Scholar
  89. Umhoefer PJ, Mayer L, Dorsey RJ (2002) Evolution of the margin of the Gulf of California near Loreto, Baja California peninsula, Mexico. Geol Soc Am Bull 114:849–868CrossRefGoogle Scholar
  90. Underwood MB, Moore GF (1995) Trenches and trench-slope basins. In: Busby CJ, Ingersoll RV (eds) Tectonics of sedimentary basins. Blackwell, Oxford, pp 179–219Google Scholar
  91. Urbanek Ch, Frank W, Grasemann B, Decker K (2002) Eoalpine versus tertiary deformation: Dating of heterogeneously partitioned strain (Tauern Window), Austria). In: Proceedings PANGEO Austria, Salzburg 2002 pp183–184Google Scholar
  92. Vozarova A, Vozar J, Mayr M (1999) High-pressure metamorphism of basalts in the evaporite sequence of the Haselgebirge: evidence from Bad Ischl (Austria). Abh Geol Bundesanstalt 56/1:325–330Google Scholar
  93. Wächter J (1987) Jurassische Massflow- und Internbreccien und ihr sedimentär-tektonisches Umfeld im mittleren Abschnitt der Nördlichen Kalkalpen. Bochumer Geologisch-Geotechnische Arb 27:1–239Google Scholar
  94. Weaver CE (1984) Shale-slate. Metamorphism in southern Appalchians. Elsevier, Amsterdam, pp 1–236Google Scholar
  95. Weissert HJ, Bernoulli D (1985) A transform margin in the Mesozoic Tethys: evidence from the Swiss Alps. Geol Rundsch 74:665–679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Geological Institute, CEAL-LaboratorySlovak Academy of ScienceBratislavaSlovakia
  2. 2.Vrije Universiteit/Earth and Life SciencesAmsterdamNetherlands

Personalised recommendations