Advertisement

International Journal of Earth Sciences

, Volume 94, Issue 5–6, pp 1094–1102 | Cite as

Quantification of recent movement potentials in Schleswig-Holstein (Germany) by GIS-based calculation of correlation coefficients

  • Rouwen Lehné
  • Frank Sirocko
Original paper

Abstract

In order to investigate connections between deep tectonic and halokinetic structures and the development of recent topography, GIS-based calculation of correlation coefficients was carried out between different stratigraphic horizons of the deep Northwest German Basin (NGB) according to the “Geotektonischer Atlas von NW-Deutschland” and surface topography of Schleswig-Holstein. The results show seven areas of high correlation that are traceable from the Base Zechstein up to the recent surface topography. Five areas with high correlation are connected to NNE–SSW trending salt structures within the Glückstadt Trough, i.e. the area of the salt domes Oldensworth, Tellingstedt, Eisendorf and, to the north of Hamburg, the area of the salt domes Elmshorn and Sievershütten. Two areas, however, with NW–SE trending high correlation are located in the northwest (restricted to the Westschleswig Block) and the northeast (south of Fehmarn) outside the Glückstadt Trough. These NW–SE trending correlation areas are not related to known salt structures and/or faults but match the general orientation of faults in the NGB.

Keywords

GIS Correlation coefficient Northwest German Basin Recent crustal movement Trend analysis 

References

  1. Anzidei M (2001) Insights into present-day crustal motion in the central Mediterranean area from GPS surveys. Geophys J Int 146:98–110CrossRefGoogle Scholar
  2. Baldschuhn R, Frisch U, Kockel F (1996) Geotektonischer Atlas von NW-Deutschland. BGR, HannoverGoogle Scholar
  3. Devoti R (2002) Geodetic control on recent tectonic movements in the central Mediterranean area. Tectonophysics 346:151–167CrossRefGoogle Scholar
  4. Dulce JC (1983) Zur Anwendungsmöglichkeit linearanalytischer Fernerkundungsmethoden im Verbreitungsgebiet Quartärer Ablagerungen am Beispiel Schleswig-Holsteins. PhD thesis, Kiel, p 135Google Scholar
  5. Ehlers J (1990) Untersuchungen zur Morphodynamik der Vereisungen Norddeutschlands unter Berücksichtigung benachbarter Gebiete. Bremer Beiträge zur Geographie und Raumplanung 19:1–167Google Scholar
  6. Fahrmeir L, Künstler R, Pigeot I, Tutz G (2001) Statistik: Der Weg zur Datenanalyse. Springer, Berlin Heidelberg New York, pp 135–141Google Scholar
  7. Fuchs K, Müller B (2001) World stress map of the Earth: a key to tectonic processes and technological applications. Naturwissenschaften 88:357–371. DOI 10.1007/s001140100253. Available online at http://www.world-stress-map.org
  8. Garetsky RG, Ludwig AO, Schwab G, Stackebrandt W (2001) Neogeodynamics of the Baltic Sea Depression and adjacent areas: results of IGCP project 346. Brandenburgische Geowissenschaftliche Beiträge 1:1–48Google Scholar
  9. Hartung J (1998) Statistik. Oldenbourg, MünchenGoogle Scholar
  10. Hönemann G, Küstermann W, Meyer W (1995) Reflexionsseismische Kartierung von Tieflagen der Pleistozänbasis in Nordostdeutschland. Z Geol Wiss 23(3):261–275Google Scholar
  11. Ihde J, Steinberg J, Ellenberg J, Bankwitz E (1987) On recent vertical crustal movement derived from relevellings within the territory of the G.D.R. Gerlands Beitr Geophys 96:206–217Google Scholar
  12. Jäger K (2003) Fernerkundliche und linearanalytische Untersuchungen an tektonischen und geologischen Strukturen in Ostholstein. Diploma thesis, Mainz, p 58Google Scholar
  13. James TS, Lambert A (1993) A comparison of VLBI data with the Ice−3G glacial rebound model. Geophys Res Lett 20(9):871–874CrossRefGoogle Scholar
  14. Kaiser A, Reicherter K, Hübscher Ch, Gajewski D (2005) Variation of the present-day stress field within the North German Basin—insights from thin shell FE-modeling based on residual GPS velocities. Tectonophysics 397:55–72CrossRefGoogle Scholar
  15. Lagerbäck R (1990) Late Quaternary faulting and paleoseismicity in northern Fennoscandia, with particular reference to the Lansjärv area, northern Sweden. Geologisca Föreningens I Stockholm Förhandlingar 112(4):333–354Google Scholar
  16. Lehné R (2005) Bodenbewegungspotenziale in Schleswig-Holstein—Lokalisierung und Quantifizierung durch GIS-Analysen, seismische Interpretation, Fernerkundung, statistische Auswertung und Feldarbeit. PhD thesis, Mainz, p 232Google Scholar
  17. Liedkte H (1981) Die nordischen Vereisungen in Mitteleuropa. Forschungen zur Deutschen Landeskunde, Trier, p 307Google Scholar
  18. Ludwig AO (2001) Vertical movements since the beginning of the Rupelian stage (map 1). Neogeodynamica Baltica IGCP-project 346. Brandenburgische Geowissenschaftliche Beiträge 8(1):5–12Google Scholar
  19. Milne GA (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–2385CrossRefGoogle Scholar
  20. Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math Geol 35:651–665. DOI 10.1023/B:MATG.0000002982.52104.02Google Scholar
  21. Offhaus HE (1999) Zur Möglichkeit natürlich geschlossener Systeme in der Geologie. Z Geol Wiss 27:77–90Google Scholar
  22. Piotrowski JA (1994) Tunnel-valley formation in northwest Germany—geology, mechanisms of formation and subglacial bed conditions for the Bornhöved tunnel valley. Sediment Geol 89:107–141CrossRefGoogle Scholar
  23. Scherneck HG, Johansson JM, Mitrovica JX, Davis JL (1998) The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPO network. Tectonophysics 294:305–321CrossRefGoogle Scholar
  24. Schlittgen R (2003) Einführung in die Statistik: Analyse und Modellierung von Daten. Oldenbourg, München, pp 172–185Google Scholar
  25. Schwab G (1996) Zum Relief der Quartärbasis in Norddeutschland. Bemerkungen zu einer neuen Karte. Z Geol Wiss 24:343–349Google Scholar
  26. Sirocko F (1998) Die Entwicklung der nordostdeutschen Ströme unter dem Einfluss jüngster tektonischer Bewegungen. Brandenburgische Geowissenschaftliche Beiträge 5:75–80Google Scholar
  27. Stackebrandt W, Garetzky R, Aizberg R, Karabanov A, Ludwig AO, Ostaficzuk S (2001) The neogeodynamics of northern central Europe—results of IGCP-project no. 346: “Neogeodynamica Baltica”. Z Geol Wiss 29(1/2):13–16Google Scholar
  28. Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice-sheets, crustal deformation and seismicity. Quartenary Sci Rev 19:1367–1389CrossRefGoogle Scholar
  29. Szeder T, Sirocko F (2005) Evidence for active tilting of the NW-German Basin from correlations between fluvial landscape and geological subground. Int J Earth Sci 94:66–93. DOI 10.1007/s00531-004-0446-zGoogle Scholar
  30. Wahlström R (1993) Fennoscandian seismicity and it’s relation to the isostatic rebound. Global Planet Change 8:107–112CrossRefGoogle Scholar
  31. Walter R (1992) Geologie von Mitteleuropa. Schweizerbart, StuttgartGoogle Scholar
  32. Weber H (1977) Salzstrukturen, Erdöl und Kreidebasis in Schleswig-Holstein. Übersichtskarten zur Geologie von Schleswig-Holstein 1:50000, Landesamt für Natur und Umwelt des Landes Schleswig-Holstein, FlintbekGoogle Scholar
  33. Wu P, Johnston P, Lambeck K (1999) Postglacial rebound and fault instability in Fennoscandia. Geophys J Int 139:657–670CrossRefGoogle Scholar
  34. Wünnemann B (1993) Ergebnisse zur jungpleistozänen Entwicklung der Langseerinne Südangelns in Schleswig-Holstein. Berliner Geogr Abh 55:1–167Google Scholar
  35. Ziegler PA (1990) Geological atlas of western and central Europe, 2nd edn. Shell International Petroleum Maatschappij B.V. and Geological Society/Elsevier, London/Amsterdam, p 239Google Scholar
  36. Zoback ML (1992) First- and second-order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97(B8):11703–11728CrossRefGoogle Scholar
  37. Zoback MD, Grollimund B (2001) Impact of deglaciation on present-day intraplate seismicity in eastern North America and western Europe. Earth Planet Sci 333:23–33Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for Geosciences, Department of SedimentologyUniversity of MainzMainzGermany

Personalised recommendations