Advertisement

International Journal of Earth Sciences

, Volume 95, Issue 3, pp 504–528 | Cite as

Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°−42°15′S

  • A. C. AdriasolaEmail author
  • S. N. Thomson
  • M. R. Brix
  • F. Hervé
  • B. Stöckhert
Original Paper

Abstract

Zircon and apatite fission track (FT) thermochronology was applied to investigate the history of cooling and denudation of the Southern Andes between 41° and 42°15′S in relation to the late Cenozoic activity of the Liquiñe-Ofqui fault zone (LOFZ) and the northward migration of the Chile Triple Junction (CTJ). Fifty-six zircon and 51 apatite FT ages, plus 37 apatite confined track-length distributions were obtained mainly from plutonic rocks of the North Patagonian Batholith (NPB) in the main Andean Cordillera. Apatite FT ages and track lengths indicate a stage of rapid cooling at ∼5--3 Ma along both sides of the LOFZ, whereas older Miocene ages with monotonous cooling histories were obtained further away from the fault. Zircon FT ages range from Cretaceous to Pliocene, with marked differences observed along and across the LOFZ. Three different types of temperature-time histories characterise the post-magmatic cooling of the NPB in the region: deep intrusions with moderate and steady cooling rates, intrusions in the upper crust with very slow cooling rates following a stage of initial rapid cooling, and rapidly cooled and exhumed shallow intrusions, the latter with younger ages towards the fault zone. The most prominent denudation episode along the LOFZ is late Miocene to Pliocene, coeval with plate tectonic reconstructions for the arrival and subduction of the Chile Rise beneath the Taitao Peninsula.

Keywords

Southern Chilean Andes Liquiñe-Ofqui Fault Zone Fission track thermochronology Arc magmatism Denudation 

Notes

Acknowledgements

A.C. Adriasola was sponsored by DAAD Grant A/99/02931. Field work was funded by DFG Grant Sto 196/11-2 and by Fondecyt Grant 1980741 to F. Hervé from the Universidad de Chile. We thank especially Jorge Muñoz and Sernageomin - Puerto Varas for their logistic help at field and for providing additional samples for FT dating. We thank C. Mpodozis from ENAP for his valuable comments concerning the regional geology of the study area. Frank Hansen and Ralf Kloke are thanked for preparing the mineral separates. The paper benefited greatly from very constructive reviews by M. Rahn and E. Hejl.

References

  1. Adriasola AC (2003) Low temperature thermal history and denudation along the Liquiñe-Ofqui fault zone in the Southern Chilean Andes, 41–42°S. PhD Thesis, Ruhr-Universität Bochum, 119 pp. URN: urn:nbn:de:hbz:294–11509Google Scholar
  2. Beck ME, Rojas C, Cembrano J (1993) On the nature of buttressing in margin-parallel strike-slip fault systems. Geology 21:755–758Google Scholar
  3. Beck ME, Burmester R, Cembrano J, Drake R, García A, Hervé F, Munizaga F (2000) Paleomagnetism of the North Patagonian Batholith, southern Chile. An exercise in shape analysis. Tectonophysics 326:185–202Google Scholar
  4. Best MG (2003) Igneous and metamorphic petrology, 2nd edn. Blackwell Science, United Kingdom, p 756Google Scholar
  5. Brandon MT (1996) Probability density plot for fission-track grain-age distributions. Radiat Meas 26:663–676Google Scholar
  6. Brandon MT (2002) Decomposition of mixed grain age distributions using Binomfit. On Track 24:13–18Google Scholar
  7. Brandon MT, Vance JA (1992) New statistical methods for analysis of fission-track grain-age distributions with applications to detrital zircon ages from the Olympic subduction complex, Western Washington State. Am J Sci 2:565–636Google Scholar
  8. Brandon MT, Roden-Tice MK, Garver J (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009Google Scholar
  9. Brix MR, Stöckhert B, Seidel E, Theye T, Thomson SN, Küster M (2002) Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 326:185–202Google Scholar
  10. Brozovic N, Burbank DW, Meigs AJ (1997) Climatic limits on landscape development in the northwestern Himalaya. Science 276:571–574Google Scholar
  11. Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalaya. Nature 379:505–510Google Scholar
  12. Burbank DW, Blythe AE, Putkonen B, Gabet E, Oskin M, Barros A, Ojha TP (2003) Decoupling of erosion in the Himalayas. Nature 426:652–655Google Scholar
  13. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res 91:471–496Google Scholar
  14. Carrasco V (1995) Geología y geoquímica del Batolito Norpatagónico y rocas volcánicas asociadas a la zona de falla Liquiñe-Ofqui (41°−05-41°40’LS), X región. Mem de Titulo Depto Geol Univ de Chile, Santiago, Chile, p 127Google Scholar
  15. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui Fault Zone: a long lived intra arc fault system in southern Chile. Tectonophysics 259:55–66Google Scholar
  16. Cembrano J, Schermer E, Lavenu A, Sanhueza A (2000) Contrasting nature of deformation along an intra-arc shear zone, The Liquiñe-Ofqui Fault Zone, Southern Chilean Andes. Tectonophysics 319:129–149Google Scholar
  17. Cembrano J, Lavenu A, Reynolds P, Arancibia G, Lopez G, Sanhueza A (2002) Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction. Tectonophysics 354:289–314Google Scholar
  18. Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing of etched fission tracks in fluorapatite. Geochim Cosmochim Acta 55:1449–1465Google Scholar
  19. De la Cruz R, Suárez M, Covacevich V, Quiroz D (1996) Estratigrafía de la zona de Palena y Futaleufú (43°15’- 43°45’ LS), X Region, Chile XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos. Actas 1:417–424Google Scholar
  20. Dell’Angelo LN, Tullis J (1989) Fabric development in experimentally sheared quartzites. Tectonophysics 169:1–21Google Scholar
  21. Dewey JF, Lamb SH (1992) Active tectonics of the Andes. Tectonophysics 205:79–95Google Scholar
  22. Diriason M, Cobbold PR, Rosello EA, Amos AJ (1998) Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina. J South Am Earth Sci 11:519–532Google Scholar
  23. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274Google Scholar
  24. Dokka RK, Mahaffie MJ, Snoke AW (1986) Thermochronologic evidence of a major tectonic denudation associated with detachment faulting, northern Ruby Mountains-East Humboldt Range, Nevada. Tectonics 5:995–1006Google Scholar
  25. Duhart P, Crignola G, Ordoñez BA, Muñoz J (2000) Franjas metalogénicas en Chiloé continental (41°−44°S) IX Congreso Geológico Chileno, Puerto Varas, Chile. Actas 1:201–205Google Scholar
  26. Faure G (1986) Principles on Isotopic Geology. John Wiley, New York pp 589Google Scholar
  27. Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the Central Alaska Range; a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res 100:20,175–20,191Google Scholar
  28. Forsythe R, Nelson EP (1985) Geological manifestations of ridge collision: evidence from the Golfo de Penas-Taitao Basin, southern Chile. Tectonics 4:477–495Google Scholar
  29. Forsythe R, Nelson EP, Carr MJ, Kaeding ME, Hervé M, Mpodozis C, Soffia M, Harambour S (1986) Pliocene near-trench magmatism in southern Chile: a possible manifestation of ridge collision. Geology 14:23–27Google Scholar
  30. Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks 17:207–214Google Scholar
  31. Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks 21:459–470Google Scholar
  32. Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic for thermal analysis. Contrib Mineral Petrol, 94:405–415Google Scholar
  33. Gonzalez E (1989) Hydrocarbon resources in the coastal zone of Chile. In: Ericksen GE, Cañas MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources Circum-Pacific council for energy and mineral resources earth science series, 11. Houston, pp 383–404Google Scholar
  34. Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influence of inherent stability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89:335–352Google Scholar
  35. Green PF, Duddy IR, Laslett GM, Hegarthy KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite: 4. Quantitative modeling techniques and extension to geological time scales. Chem Geol 79:155–182Google Scholar
  36. Hallet B, Hunter L, Bogen J (1996) Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Glob Planet Change 12:213–235Google Scholar
  37. Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646Google Scholar
  38. Harrison TM (1981) Diffusion of 40Ar in Hornblende. Contrib Mineral Petrol 78:324–331Google Scholar
  39. Harrison TM, Duncan I, McDougall I (1985) Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochim Cosmochim Acta 49:2461–2468Google Scholar
  40. Hervé F (1984) Rejuvenecimiento de edades radiométricas y el sistema de fallas Liquiñe-Ofqui. Com Dep Geol Univ Chile 35:107–116Google Scholar
  41. Hervé F, Araya E, Fuenzalida J, Solano A (1979) Edades radiométricas y tectónica neógena en el sector costero de Chiloé Continental, X Región. Segundo Congreso Geológico Chileno, Arica, Actas 1:F1–F18Google Scholar
  42. Hervé F, Pankhurst RJ, Drake R, Beck ME, Mpodozis C (1993) Granite generation and rapid unroofing related to strike-slip faulting, Aysén, Southern Chile. Earth Planet Sci Lett 120:375–386Google Scholar
  43. Hervé F, Pankhurst RJ, Drake R, Beck ME (1995) Pillow metabasalts in a mid-Tertiary extensional basin adjacent to the Liquiñe Ofqui fault zone: the Isla Magdalena area, Aysén, Chile. J South Am Sci 8:33–46Google Scholar
  44. Hervé F, Pankhurst RJ, Demant A, Ramirez E (1996) Age and Al-in-hornblende geobarometry in the North Patagonian Batholith, Aysén, Chile. Third International Symposium on Andean Geodynamics (ISAG), St Malo, France, abstracts, ORSTOM, Paris, pp 17–19Google Scholar
  45. Hervé F, Fanning CM, Bradshaw J, Bradshaw M, Lacassie JP (1999) Late Permian SHRIMP U-Pb detrital zircon ages constrain the age of accretion of oceanic basalt to the Gondwana margin at the Madre de Dios Archipelago, southern Chile. In: Fourth ISAG, Göttingen, Germany, abstracts, ORSTOM, Paris, pp 327–328Google Scholar
  46. Hervé F, Demant A, Ramos V, Pankhurst RJ, Suárez M (2000) The Southern Andes. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. pp 605–634Google Scholar
  47. Hervé F, Fanning CM (2001) Late Triassic detrital zircons in metaturbidites of the Chonos Metamorphic Complex, southern Chile. Rev Geol Chile 28(1):91–104CrossRefGoogle Scholar
  48. Hervé M (1976) Estudio Geológico de la Falla Liquiñe-Reloncaví en el área de Liquiñe: antecedentes de un movimiento transcurrente. Primer Congreso Geológico Chileno, Santiago, Actas 1:B39–B56Google Scholar
  49. Heusser CJ (1990) Chilotan piedmont glacier in the Southern Andes during the glacial maximum. Rev Geol Chile 15(1):13–30Google Scholar
  50. Holdaway MJ (1971) Stability of Andalusite and the aluminosilicate phase diagrams. Am J Sci 271:97–131Google Scholar
  51. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and age of vertical movement on the Insubric fault line. Contrib Mineral Petrol 92:413–427Google Scholar
  52. Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chem Geol 80:171–178Google Scholar
  53. Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Chem Geol 1:285–317CrossRefGoogle Scholar
  54. Hurford AJ, Hunziker JC, Stöckhert B (1991) Constraints on the thermotectonic evolution of the Western Alps: evidence for episodic rapid uplift. Tectonics 10:758–769Google Scholar
  55. Hutton DHW, Reavy RJ (1992) Strike-slip tectonics and granite petrogenesis. Tectonics 11:960–967Google Scholar
  56. Johnson C, Harbury N, Hurford AJ (1997) The role of extension in the miocene denudation of the Nevado-Filábride complex, Betic Cordillera (SE Spain). Tectonics 16:189–204Google Scholar
  57. Kasuya M, Naeser CW (1988) The effect of α–damage on fission-track annealing in zircon. Nucl Tracks Radiat Meas 14:477–480Google Scholar
  58. Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geol Mat Res 2(1):1–32Google Scholar
  59. Kukowski N (1992) Plutonische hydrothermale Systeme in der kontinentalen Kruste: Numerische Modellrechungen zu räumlichen Dimensionen und zeitlichen Variationen von Quelle und Umfeld. PhD Thesis, University of Bonn, p 119Google Scholar
  60. Kukowski N, Neugebauer HJ (1990) On the ascent and emplacement of granitoid magma bodies - dynamic-thermal numerical models. Geol Rundschau 79:227–239Google Scholar
  61. Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) Bias in measurement of fission track length distributions. Nucl Tracks 6:79–85Google Scholar
  62. Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite: 2. A quantitative analysis. Chem Geol 65:1–13Google Scholar
  63. Lavenu A, Cembrano J (1999) Compressional- and transpressional-stress for Pliocene and Quaternary brittle deformation in forearc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 2:1669–1691Google Scholar
  64. Lister GS, Snoke AW (1984) S-C Mylonites. J Struct Geol 6:617–638Google Scholar
  65. Lliboutry L (1999) Glaciers of the Wet Andes. In: Williams RS, Ferrigno JG (eds) Satellite image atlas of the glaciers of the World, South America. United States Geol Survey professional paper 1386-I, http://pubs.usgs.gov.prof/p1386i/index.html
  66. Mancktelow NZ, Grasemann B (1997) Time-dependent effects of heat advection and topography in cooling histories during erosion. Tectonophysics 270:167–195Google Scholar
  67. Marsh BD (2000) Magma Chambers. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic, San Diego, CA, pp 191–206Google Scholar
  68. Martin MW, Kato CT, Rodriguez C, Godoy E, Duhart P, McDonough M, Campos A (1999) Evolution of the Late Paleozoic accretionary complex and overlying forearc-magmatic arc, south-central Chile (38°- 41°S), Constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18/4:582–605Google Scholar
  69. Mercer JH, Sutter JF (1982) Late Miocene-earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Paleogeogr Paleoclimatol Paleoecol, 38:185–206Google Scholar
  70. Montgomery DR, Balco G, Willet SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29:579–582Google Scholar
  71. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 1:481–489Google Scholar
  72. Munizaga F, Hervé F, Drake R, Pankhurst RJ, Brook M, Snelling N (1988) Geochronology of the Lake Region of South Central Chile (39°- 42°S): preliminary results. J South Am Earth Sci 1(3):309–318Google Scholar
  73. Muñoz M (1999) Tectonophysics of the Andes region: relationships with heat flow and the thermal structure. Fourth ISAG, Göttingen, Germany, abstracts. ORSTOM, Paris, pp 532–534Google Scholar
  74. Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern C (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile, 27/2:177–203Google Scholar
  75. Murdie RE, Prior DJ, Styles P, Flint SS, Pearce RG, Agar SM (1993) Seismic responses to ridge transform subduction: Chile Triple Junction. Geology 21:1095–1098Google Scholar
  76. Naeser CW (1976) Fission track dating. US Geological Survey Open File Report, vol. 76–190Google Scholar
  77. Nelson E, Forsythe R, Arit I (1994) Ridge Collision tectonics in terrane development. J South Am Earth Sci 7:271–278Google Scholar
  78. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25Google Scholar
  79. Pankhurst RJ, Hervé F, Rojas FL, Cembrano J (1992) Magmatism and tectonics in continental Chiloé, Chile (42°- 42°30’S). Tectonophysics 205:673–694Google Scholar
  80. Pankhurst RJ, Leat PT, Sruoga P, Rapela CW, Márquez M, Storey BC, Riley TR (1998) The Chon-Aike silicic igneous province of Patagonia and related rocks in West Antarctica: a silicic LIP. J Volcano Geotherm Res 81:113–136Google Scholar
  81. Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile. J Geol Soc London 156:673–694Google Scholar
  82. Parada M, Godoy E, Hervé F, Thiele R (1987) Miocene calcalkaline plutonism in the Chilean Southern Andes. Rev Bras Geosciências 17(4):450–455Google Scholar
  83. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous times. Tectonics 6:233–248Google Scholar
  84. Paterson SR, Vernon RH, Fowler Jr TK (1991) Aureole tectonics. In: Kerick D (ed) Contact Metamorphism. Rev Mineral 26:673–722Google Scholar
  85. Purdy JW, Jäger E (1976) K-Ar ages on rock-forming minerals from the Central Alps. Mem Inst Geol Mineral Univ Padova 30:1–34Google Scholar
  86. Rabassa J, Clapperton CM (1990) Quaternary glaciations of the southern Andes. Quat Sci Rev 9:153–174Google Scholar
  87. Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero model for fission-track annealing in zircon. Am Mineral 89:473–484Google Scholar
  88. Ramos V (1989) Andean foothills structures in Northern Magallanes basin, Argentina. AAPG Bull 73:887–903Google Scholar
  89. Ramos V, Kay S (1992) Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions. Tectonophysics 205:261–282Google Scholar
  90. Rojas C, Beck ME, Burmester RF, Cembrano J, Hervé F (1994) Paleomagnetism of the mid-Tertiary Ayacara Formation, southern Chile: Counterclockwise rotation in a dextral shear zone. J South Am Earth Sci 7:45–56Google Scholar
  91. Seifert W, Rosenau M, Echtler H (2003) The evolution of the South Central Chile magmatic arcs: crystallization depths of granitoids estimated by hornblende geothermobarometry – implications for mass transfer processes along the active continental margin. N Jb Geol Paläont 236:115–127Google Scholar
  92. Seipold U (1998) Temperature dependence of thermal transport properties of crystalline rocks - A general law. Tectonophysics 291:161–171Google Scholar
  93. Sernageomin (1980) Mapa geológico de Chile, escala 1:1.000.000. Servicio Nacional de Geología y Minería, Santiago, ChileGoogle Scholar
  94. Sernageomin-BRGM (1995) Carta Metalogénica X Región Sur, Chile. Servicio Nacional de Geología y Minería-Bureau de Recherches Géologiques et Minières, Informe Registrado IR-95-05, 10 Vols, SantiagoGoogle Scholar
  95. Singer B, Ackert RP, Guillou H (2004) 40Ar/39Ar and K/Ar chronology of Pleistocene glaciations in Patagonia. Geol Soc Am Bull 116/3: 434–450 DOI:10.1130/B25177.1Google Scholar
  96. Small E (1999) Does global cooling reduce relief? Nature 401:31–33Google Scholar
  97. Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 Ma: Implications for mountain building in the central Andean region. J South Am Sci 11:211–215Google Scholar
  98. Spear FS, Cheney JT (1989) A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O. Contrib Mineral Petrol 83:348–357Google Scholar
  99. Stöckhert B, Brix MR, Kleinschrodt R, Hurford AJ, Wirth R (1999) Thermochronometry and microstructures of quartz - a comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition. J Struct Geol 21:351–369Google Scholar
  100. Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady-state isotherms. Application to fission-track analysis. Earth Planet Sci Lett 124:63–74Google Scholar
  101. Suarez M, De la Cruz R (2000) Tectonics in the eastern central Patagonian Cordillera (45°30’- 47°30’S). J Geol Soc London 157:995–1001CrossRefGoogle Scholar
  102. Tagami T., Shimada C. (1996). Natural long-term annealing of the zircon fission-track system around a granitic pluton. J Geophys Res 101:8245–8255Google Scholar
  103. Thiele R, Hervé F, Parada MA, Godoy E (1986) The Liquiñe-Ofqui megafault at the Reloncaví Fiord (41°30’S), Chile. Comunicaciones Dep Geol Univ Chile 46:3–15Google Scholar
  104. Tchalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81:1625–1640Google Scholar
  105. Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: an appraisal based on fission track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114(9):1159–1173Google Scholar
  106. Thomson SN, Hervé F, Stöckhert B (2001) The Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics 20:693–711Google Scholar
  107. Tikoff B, Saint-Blanquat M (1997) Transpressional shearing and strike-slip partitioning in the Late Cretaceous Sierra Nevada magmatic arc, California. Tectonics 16:442–459Google Scholar
  108. Vietor T, Echtler H (2005) Episodic Neogene southward growth of the Andean subduction orogen between 30°S and 40°S - plate motions, mantle flow, climate, and upper-plate structure. Earth Planet Sci Lett (in press)Google Scholar
  109. Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14:263–268Google Scholar
  110. Wagner GA, Hejl E, Van den Haute P (1994) The KTB fission-track project: methodological aspects and geological implications. Radiat Meas 23:95–101Google Scholar
  111. Whipple K, Kerby E, Brocklehurst SH (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature 401:39–43Google Scholar
  112. Willet SD (1999) Orogeny and Orography: The effects of erosion on the structure of mountain belts. J Geophys Res, 104: 28,957–28,981Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. C. Adriasola
    • 1
    Email author
  • S. N. Thomson
    • 2
  • M. R. Brix
    • 1
  • F. Hervé
    • 3
  • B. Stöckhert
    • 1
  1. 1.Institut für Geologie, Mineralogie und GeophysikRuhr-Universität BochumBochumGermany
  2. 2.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  3. 3.Departamento de GeologíaUniversidad de ChileSantiagoChile

Personalised recommendations