International Journal of Earth Sciences

, Volume 94, Issue 3, pp 369–384 | Cite as

Ion microprobe (SHRIMP) dating of detrital zircon grains from quartzites of the Eckergneiss Complex, Harz Mountains (Germany): implications for the provenance and the geological history

  • Thorsten Geisler
  • Roland Vinx
  • Nergui Martin-Gombojav
  • Robert T. Pidgeon
Original paper


The Eckergneiss Complex (EGC) is a geologically unique medium- to high-grade metamorphic unit within the Rhenohercynian domain of the Mid-European Variscides. A previously, poorly defined conventional lower U–Pb intercept age of about 560 Ma from detrital zircons of metasedimentary rocks has led to speculations about an East Avalonian affinity of the EGC. In order to unravel the provenance and to constrain the age of the sediment protolith, we carried out sensitive high-resolution ion microprobe U–Pb analyses on detrital zircons from five different EGC quartzite occurrences. The obtained age spectrum indicates a SW Baltica provenance of the detritus. Sveconorwegian ages between 0.9–1.2 Ga are particularly well represented by analyses from metamorphic recrystallization/alteration zones penetrating into igneous zircon. Cadomian (Pan-African) ages, which might reflect a metamorphic event, could not be substantiated. Instead, zircons of igneous origin yielded concordant Lower Devonian and Silurian ages of 410±10, 419±10, and 436±6 Ma (1σ), implying that sedimentation of the EG protolith must have taken place after 410±10 Ma. The lower age limit of the EGC metamorphism is constrained by 295 Ma intrusion ages of the adjacent, nonmetamorphosed Harzburg Gabbronorite and Brocken Granite. Sedimentation and metamorphism must thus have taken place between about 410 Ma and 295 Ma. Given that this time span coincides with most of the sedimentation within the virtually nonmetamorphosed (lowest grade) Rhenohercynian in the Harz Mountains, including the direct vicinity of the EGC, along with the high-grade metamorphism, the EGC can hardly be seen as uplifted local basement. A possible candidate for the root region is an easterly, concealed marginal segment of the Rhenohercynian domain of the Variscides, which is tectonically overridden and suppressed by the Mid-German Crystalline Rise during continent collision. However, based on the concept of strike-slip movement of Variscan terranes with different P–T–t histories as a result of postaccretion intraplate deformation, the EGC could also represent a fault-bounded complex with an origin located far east or south east of the present location.


Eckergneiss Variscides Harz SHRIMP Zircon Provenance Baltica 



Dr. W. Wegener (Nationalpark Hochharz) and K. Surkau (Nationalpark Harz) are kindly acknowledged for permitting us to take rock samples from the EGC area. J. Richards, B. Stütze, and E. Thun are thanked for mineral separation. We would also like to thank J. Schlüter for leaving samples at our disposal and for many fruitful discussions. Critical comments on an earlier draft of the manuscript by A. Krohe and very constructive reviews of G. Zulauf and an anonymous reviewer are appreciated. We are also grateful to the Deutsche Forschungsgemeinschaft (project VI 88/2-1 to RV and TG) and the Deutsche Akademische Austauschdienst (scholarship no. A/99/07919 to NMG) for their financial support.


  1. Åhäll K-I, Larson Å (2000) Growth-related 1.85–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events. Geol Fören Förh 122:193–206Google Scholar
  2. Abdelsalam MG, Liegeois J-P, Stern RJ (2002) The Saharan metacraton. J Afr Earth Sci 34:119–136Google Scholar
  3. Anthes G, Reischmann T (2001) Timing of granitoid magmatism in the eastern mid-German crystalline rise. J Geodyn 31:119–143Google Scholar
  4. Bankwitz P (1995) Die Erdkruste der östlichen Rhenoherzynischen Zone im Umfeld des Harzes. Zentralbl Geol Paläontol Teil I 9(10):1551–1557Google Scholar
  5. Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determination of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundsch 80:669–690Google Scholar
  6. Bevier ML, Barr SM, White CE (1990) Late Precambrian U-Pb ages for the Brookville Gneiss, southern New Brunswick. J Geol 98:955–965Google Scholar
  7. Bingen B, Nordgulen Ø, Sigmond EMO, Tucker R, Mansfeld J, Högdahl K (2003) Relations between 1.19–1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S Norway. Precamb Res 124:215–241Google Scholar
  8. Black LP, Williams IS, Compston W (1986) Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contrib Mineral Petrol 94:427–437CrossRefGoogle Scholar
  9. Boullier AM (1991) The Pan-African Trans-Saharan belt in the Hoggar shield (Algeria, Mali, Niger): a review. In: Dallmeyer RD, Lécorché JP (eds) The West African Orogens and circum-Atlantic correlations. Springer, Berlin, Heidelberg, New York, pp 85–105Google Scholar
  10. Bregar M, Bauernhofer A, Pelz K, Kloetzli U, Fritz H, Neumayr P (2002) A late Neoproterozoic magmatic core complex in the Eastern Desert of Egypt: emplacement of granitoids in a wrench-tectonic setting. Precamb Res 118:59–82Google Scholar
  11. Cahen L, Snelling NJ, Delhal J, Vail JR, Bonhomme M, Ledent D (1984) The geochronology and evolution of Africa. Clarendon Press, Oxford, pp 1–512Google Scholar
  12. Claoué-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar anayses: geochronology, time scales and global stratigraphic correlation. Soc Sed Geol Spec Publ 54:3–21Google Scholar
  13. Compston W, Williams IS, Meyer C (1984) U-Pb geochronolgy of zircons from the lunar breccia 73217 using a sensitive high-resolution ion microprobe. In: Proceedings XIV lunar planetary science conference. J Geophys Res 89:B525-B534Google Scholar
  14. DeLaeter JR, Kennedy AK (1998) A double focussing mass spectrometer for geochronology. Int J Mass Spec Ion Proc 178:43–50Google Scholar
  15. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76Google Scholar
  16. Dickinson WR, Gehrels GE (2003) U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: paleogeographic implications. Sedim Geol 163:29–66Google Scholar
  17. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar (2002) Neoproterozoic to Early Cambrian history of an active plate margin of the Teplá Barrandian unit—a correlation of U-Pb isotope-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65CrossRefGoogle Scholar
  18. Düweke M, Ehrismann W, Krahmer U, Rosenbach O (1976) Magnetische und gravimetrische Messungen im Kontaktbereich Eckergneis-Gabbro des Harzer Brockenplutons. Geol Jhb 6:81–108Google Scholar
  19. Ermannsdörfer OH (1909) Der Eckergneis im Harz. Ein Beitrag zur Kenntnis der Kontaktmetamorphose und der Entstehung kristalliner Schiefer. Jb Königl-Preuß Geol Landesanst Bergakad Berlin 30:324–338Google Scholar
  20. Fernández-Suárez J, Gutiérrez Alonso G, Jefries TE (2002) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth Planet Sci Lett 204:75–88CrossRefGoogle Scholar
  21. Franke W (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. Geol Soc Amer Spec Pap 230:67–90Google Scholar
  22. Franke W (2001) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc London Spec Publ 179:35–61Google Scholar
  23. Franz L, Schuster AK, Strauss KW (1997) Basement evolution in the Rhenohercynian Segment: Discontinuous exhumation history of the Eckergneis complex (Harz Mountains, Germany). Chem Erde 57:105–135Google Scholar
  24. Franzke HJ (2001) Die strukturelle Einbindung des Eckergneises zu seinem variscisch geprägten Umfeld. Braunschweiger Geowiss Arb 24:1–26Google Scholar
  25. Friedel CH, Hoth P, Franz G, Stedingk K (1995) Niedriggradige Regionalmetamorphose im Harz. Zbl Geol Paläont Teil 1 (1993), H 9/10:1213–1235Google Scholar
  26. Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precamb Res 35:15–52Google Scholar
  27. Ganssloser M (1999) Detrital chromian spinels in Rhenohercynian greywackes and sandstones (Givetian–Visean, Variscides, Germany) as indicators of ultramafic source rocks. Geol Mag 136:437–451Google Scholar
  28. Gee DG, Sturt BA (1985) The Caledonide orogen—Scandinavia and related areas. Wiley, Chichester, pp 1–1266Google Scholar
  29. Geisler T, Pidgeon RT (2001) Significance of radiation damage on the integral SEM cathodoluminescence intensity of zircon: an experimental annealing study. N Jb Miner Monatsh 10:433–445Google Scholar
  30. Geisler T, Schleicher H (2000) Composition and U-Th-total Pb model ages of polygenetic zircons from the Vånga granite, south Sweden: an electron microprobe study. Geol Fören Förh 122:227–235Google Scholar
  31. Geisler T, Ulonska M, Schleicher H, Pidgeon RT, van Bronswijk W (2001) Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contrib Mineral Petrol 141:53–65Google Scholar
  32. Geisler T, Pidgeon RT, van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154CrossRefGoogle Scholar
  33. Geisler T, Trachenko K, Ríos S, Dove M, Salje EKH (2003a) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as nuclear waste form. J Phys Condens Matter 15:L597-L605Google Scholar
  34. Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003b) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 86:1496–1518Google Scholar
  35. Geisler T, Rashwan AA, Rahn M, Poller U, Zwingmann H, Pidgeon RT, Schleicher H (2003c) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508CrossRefGoogle Scholar
  36. Geisler T, Seydoux-Guillaume A-M, Wiedenbeck M, Berndt J, Wirth R, Zhang M, Mihailova B, Putnis A, Salje EKH, Schlüter J (2004) Periodic pattern formation in hydrothermally treated, metamict zircon. Amer Mineral 89:1341–1347Google Scholar
  37. Gradstein FM, Ogg JG, Smith AG, Agterberg FP, Bleeker W et al (2004) A geological timescale 2004. Cambridge University Press, CambridgeGoogle Scholar
  38. Grauert B, Wagner ME (1975) Age of granulite-facies metamorphism of the Wilmington Complex, Delaware-Pennsyvania Piedmont. Am J Sci 275:683–691Google Scholar
  39. Hallsworth CR, Morton AC, Claoué-Long J, Fanning CM (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sedim Geol 137:147–185Google Scholar
  40. Haverkamp J, van Hoegen J, Kramm U, Walter R (1992) Application of U–Pb systems from detrital zircons for paleographic reconstructions—a case study from the Rhenohercynian. Geo Acta 5:69–82Google Scholar
  41. Huckriede H, Ahrendt H, Franke W, Wemmer K, Meischner D (1998) Orogenic processes recorded in Early Carboniferous and Devonian clastic sediments of the Rhenohercynian Zone. Terra Nostra 98(2):77–79Google Scholar
  42. Ingle S, Mueller PA, Heatherington AL, Kozuch M (2003) Isotopic evidence for the magmatic and tectonic histories of the Carolina terrane: implications for stratigraphy and terrane affiliation. Tectonophys 371:187–211Google Scholar
  43. Irvine TN (1967) Chromian spinel as a petrogenetic indicator Part 2: Petrologic applications. Can J Earth Sci 4:71–97Google Scholar
  44. Karabinos P, Gromet LP (1993) Application of single-grain zircon evaporation analysis to detrital grain studies and age discrimination in igneous suites. Geochim Cosmochim Acta 57:4257–4267CrossRefGoogle Scholar
  45. Krohe A (1996) Variscan tectonics of central Europe: postaccretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388CrossRefGoogle Scholar
  46. Kröner A, Jaecker P, Williams IS (1994) Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U–Pb and Pb–Pb ages for igneous and metamorphic zircons from northern Sri Lanka. Precamb Res 66:151–181Google Scholar
  47. Ludwig KR (1998) Calculation of uncertainties of U–Pb isotope data. Earth Plan Sci Lett 46:212–220Google Scholar
  48. Ludwig KR (2001) Users manual for isoplot/Ex Version 2.49. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Pubication No. 1a, Berkeley.Google Scholar
  49. Mohr K (1978) Geologie und Minerallagerstätten des Harzes. E Schweizerbartsche Verlgasbuchhandlung, Stuttgart, pp 1–387Google Scholar
  50. Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites SW Norway): constraints for Pb diffusion in zircon. J Metam Geol 20:727–740CrossRefGoogle Scholar
  51. Morton AC, Claoué-Long JC, Hallsworth CR (2001) Zircon age and heavy mineral constraints on provenance of the North Sea Carboniferous sandstone. Mar Petrol Geol 18:319–337Google Scholar
  52. Müller G, Strauss KW (1985) Polymetamorphe Entwicklung des Eckergneis-Komplexes/Harz. N Jb Mineral Abh 152(3):271–291Google Scholar
  53. Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precamb Res 86:21–44Google Scholar
  54. Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq gneiss complex of southern West Greenland: the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precamb Res 78:1–39Google Scholar
  55. Obst K, Hammer J, Katzung G, Korich D (2004) The Mesoproterozoic basement in the southern Baltic Sea: insights from the G 14–1 off-shore borehole. Int J Earth Sci 93:1–12Google Scholar
  56. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rund 86:2–20Google Scholar
  57. Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophys 314:17–41CrossRefGoogle Scholar
  58. Pidgeon RT, Furfaro D, Kennedy AK, Nemchin AA, van Bronswijk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. 8th international conference on geochronology, cosmochronology and isotope geology. US Geological Survey Circular 1107:251Google Scholar
  59. Pin C (1991) Central-West Europe: Major stages of development during Precambrian and Paleozoic times. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-Atlantic correlations. Springer, Berlin, Heidelberg, New york, pp 295–306Google Scholar
  60. Press S (1986) Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish Massif. Geol Rund 75:333–340Google Scholar
  61. Reinhardt J, Kleemann U (1994) Extensional unroofing of granulitic lower crust and related low-pressure, high-temperature metamorphism in the Saxonian Granulite Massif, Germany. Tectonophys 238:71–94Google Scholar
  62. Robardet M (2003) The Amorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory paleobiographical data. Paleageogr Paleoclimatol Paleoecol 60:283–304Google Scholar
  63. Rocci G, Bronner G, Deschamps M (1991) Crystalline basement of the West African craton. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-Atlantic correlations. Springer, Berlin, Heidelberg, New york, pp 31–61Google Scholar
  64. Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201CrossRefGoogle Scholar
  65. Schoell M, Lenz H, Harre W (1973) Das Alter der Hauptmetamorphose des Eckergneises im Harz auf Grund von Rb/Sr-Datierungen. Geol Jb A9:89–95Google Scholar
  66. Söderlund U, Jarl L-G, Persson P-O, Stephens MB, Wahlgren C-H (1999) Protolith ages and timing of deformation in the eastern, marginal part of the Sveconorwegian orogen, southwestern Sweden. Precamb Res 94:29–48Google Scholar
  67. Söderlund U, Möller C, Andersson J, Johansson L, Whitehouse M (2002) Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking. Precamb Res 113:193–225Google Scholar
  68. Steiger RH, Jäger E (1977) Subcommision on Geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  69. Strachan RA, Nutman AP, Friderichsen JD (1995) SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. J Geol Soc Lond 152:779–784Google Scholar
  70. Tapponier P, Lacassin R, Leloup PH, Schärer U, Dalai Z, Haiwei W, Xiaohan L, Shaocheng J, Liangshen Z, Jiayou Z (1990) The Ailao Shan-Red River metamorphic belt: Tertiary left lateral shear between Sundaland and South China. Nature 343:431–437Google Scholar
  71. Tassinari CCG, Macambira MJB (1999) Geochronological provinces in the Amazonian craton. Episodes 22:174–182Google Scholar
  72. Tesalina SG, Nimis P, Augé T, Zaykov VV (2003) Origin of chromite in mafic–ultramafic-hosted hydrothermal massive sulfides from the Main Uralian Fault, South Urals, Russia. Lithos 70:39–59Google Scholar
  73. Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2000) Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 56:303–332Google Scholar
  74. Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—Recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002CrossRefGoogle Scholar
  75. Torsvik TH (1998) Palaeozoic palaeogeography: a North Atlantic viewpoint. Geol Fören Förh 120:109–118Google Scholar
  76. Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358CrossRefGoogle Scholar
  77. Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404CrossRefGoogle Scholar
  78. Vermeesch P (2004) How many grains are needed for provenance study. Earth Planet Sci 224:441–451CrossRefGoogle Scholar
  79. Wachendorf H (1986) Der Harz—Variszischer Bau und geodynamische Entwicklung. Geol Jhb A 91:3–67Google Scholar
  80. Wachendorf H, Buchholz P, Zellmer H (1995) Fakten zum Harz-Paläozoikum und ihre geodynamische Interpretation. Nova Acta Leopoldina NF 71 Nr 291:119–150Google Scholar
  81. Willner AP, Krohe A, Maresch MV (2000) Interrelated P–T–t–d paths in the Variscan Erzgebirge dome (Saxony, Germany): Constraints on the rapid exhumation of high-pressure rocks from the root zone of a collisional orogen. Int Geol Rev 41:64–85Google Scholar
  82. Zeh A, Brätz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and Sm–Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: evidence for northern Gondwana and Grenvillian provenance. J Geol Soc London 158:983–994Google Scholar
  83. Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162Google Scholar
  84. Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Thorsten Geisler
    • 1
  • Roland Vinx
    • 2
  • Nergui Martin-Gombojav
    • 2
  • Robert T. Pidgeon
    • 3
  1. 1.Mineralogisches InstitutUniversität MünsterMünsterGermany
  2. 2.Mineralogisch-Petrographisches Institut der Universität HamburgHamburgGermany
  3. 3.School of Applied GeologyCurtin University of TechnologyPerthAustralia

Personalised recommendations