Advertisement

International Journal of Earth Sciences

, Volume 94, Issue 4, pp 732–750 | Cite as

Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling

  • Michael SchwarzEmail author
  • Andreas Henk
Original paper

Abstract

The evolution and geometry of the Tertiary Upper Rhine Graben were controlled by a continually changing stress field and the reactivation of pre-existing crustal discontinuities. A period of WNW-ESE extension in the late Eocene and Oligocene was followed by lateral translation from the early Miocene onwards. This study utilizes 3D finite element techniques to simulate extension and lateral translation on a lithospheric scale. Brittle and creep behaviour of lithospheric rocks are represented by elastoplasticity and thermally activated power-law viscoplasticity, respectively. Contact elements allocated with cohesion and frictional coefficients are used to describe pre-existing zones of weakness in the elastic-brittle field. Our results suggest that (1) extension is accommodated along listric border faults to midcrustal depth of 15–16 km. Beneath, pure shear stretching occurs without a need for localized shear zones in lower crust and upper mantle. (2) Ductile flow at midcrustal depth across the graben accounts for the pronounced halfgraben morphology. Thereby, the shape of the border faults, their frictional coefficients, and sedimentary loads have profound effects on the rate of ductile flow across the graben. (3) Horizontal extension of 8–8.5 km and sinistral displacement across the rift of 3–4 km are needed to accommodate the observed sediment thickness.

Keywords

Upper Rhine Graben Basin evolution 3D finite element modelling Contact elements Ductile flow 

Notes

Acknowledgements

This paper is a contribution to the European Upper Rhine Graben Evolution and Neotectonics (EUCOR-URGENT) Project. Nina Kukowski and Charles Gumiaux are kindly thanked for their thorough and detailed reviews. The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft.

References

  1. Anderle HJ (1968) Die Mächtigkeiten der sandig-kiesigen Sedimente des Quartärs im nördlichen Oberrheingraben und der östlichen Untermainebene. Notizbl hess L-Amt Bodenforsch 96:185–196Google Scholar
  2. Anderle HJ (1974) Block tectonic interrelations between Northern Upper Rhine Graben and Southern Taunus Mountains. In: Illies JH, Fuchs K (eds) Approaches to taphrogenesis: proceedings of an international Rift symposium held in Karlsruhe April 1972. Schweizerbart, Stuttgart, pp 243–253Google Scholar
  3. Athy LF (1930) Density, porosity and compaction of sedimentary rocks. Bull Am Assoc Pet Geol 14:1–24Google Scholar
  4. Banda E, Cloetingh S (1992) Physical properties of the lithosphere. In: Blundell D, Freeman R, Müller S (eds) A continent revealed. Cambridge University Press, pp 71–80Google Scholar
  5. Bartz J (1974) Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies JH, Fuchs K (eds) Approaches to taphrogenesis: proceedings of an international Rift symposium held in Karlsruhe, April 1972. Schweizerbart, Stuttgart, pp 78–87Google Scholar
  6. Behrmann J, Hermann O, Horstmann M, Tanner D, Bertrand G (2003) Anatomy and kinematics of oblique continental rifting revealed; a three-dimensional case study of the Southeast Upper Rhine Graben (Germany). AAPG Bull 87:1105–1121Google Scholar
  7. Berger JP (2002) Eocene-Pliocene time scale, stratigraphy and terrace dating. Abstract Volume to 2nd EUCOR-URGENT Workshop, p 5Google Scholar
  8. Bergerat F (1985) Dèformations cassantes et champs de contrainte tertiaires dans la plate-forme Europèenne. Mem Sci Terre, Universitè P et M Curie, pp 1–315Google Scholar
  9. Bosum W, Ullrich HJ (1970) Die Flurmagnetometermessung des Oberrheingrabens und ihre Interpretation. Geol Rundsch 59:83–106Google Scholar
  10. Boutilier RR, Keen CE (1994) Geodynamic models of fault-controlled extension. Tectonics 13:439-454CrossRefGoogle Scholar
  11. Brun JP, Gutscher MA, DEKORP-ECORS team (1992a) Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data: a summary. Tectonophysics 208:139–147CrossRefGoogle Scholar
  12. Brun JP, Wenzel F, ECORS-DEKORP team (1992b) Crustal-scale structure of the southern Rhine Graben from ECORS-DEKORP seismic reflection data. Geology 19:758–762CrossRefGoogle Scholar
  13. Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626Google Scholar
  14. Byerlee JD (1990) Friction, overpressure, and fault normal compression. Geophys Res Lett 17:2109–2112Google Scholar
  15. Chopra PN, Paterson MS (1981) The experimental deformation of dunite. Tectonophysics 78:453–473CrossRefGoogle Scholar
  16. Chorowicz J, Defontaines B (1993) Transfer faults and pull-apart model in the Rhine Graben from analysis of multisource data. J Geophys Res 98:14339–14351Google Scholar
  17. Clauser C, Villinger H (1990) Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophys J Int 100:393–414Google Scholar
  18. Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black forest. Geol Rundsch 87:43–52CrossRefGoogle Scholar
  19. Derer CE (2003) Tectono-sedimentary evolution of the northern Upper Rhine Graben (Germany), with special regard to the early syn-rift stage. PhD thesis, University of Bonn, pp 1–103Google Scholar
  20. Diederich G (1987) Bruchtektonik des nördlichen hessischen Buntsandstein-Odenwalds. Geol Jb Hessen 115:305–313Google Scholar
  21. Dieterich JH, Conrad G (1984) Effect of humidity on time- and velocity-dependent friction in rocks. J Geophys Res 89:4196–4202Google Scholar
  22. Doebl F (1967) The Tertiary and Pleistocene sediments of the northern and central part of the Upper Rhine Graben. Abh Geol L-Anst Baden-Württemberg 6:48–54Google Scholar
  23. Doebl F (1970) Die tertiären und quartären Sedimente des südlichen Rheingrabens. In: Illies JH, Müller S (eds) Graben problems: proceedings of an international Rift symposium held in Karlsruhe, October 1968. Schweizerbart, Stuttgart, pp 56–66Google Scholar
  24. Doebl F, Teichmueller R (1979) Zur Geologie und heutigen Geothermik im mittleren Oberrheingraben. Fortschr Geol Rheinl u Westf 27:1–17Google Scholar
  25. Duringer P (1988) Les conglomérats des bordures du rift cénozoique rhénan. Dynamique sédimentaire et contrôle climatique. PhD thesis, University of Strasbourg, pp 1–261Google Scholar
  26. Durst H (1991) Aspects of exploration history and structural style in the Rhine Graben area. In: Spencer AM (ed) Generation, accumulation, and production of Europe’s hydrocarbons. Spec Publ Europ Assoc Petr Geosci 1:247–261Google Scholar
  27. Edel JB, Fluck P (1989) The upper Rhenish Shield basement (Vosges, Upper Rhine Graben and Schwarzwald): main structural features deduced from magnetic, gravimetric and geological data. Tectonophysics 169:303–316CrossRefGoogle Scholar
  28. Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geol Rundsch 84:412–432CrossRefGoogle Scholar
  29. Fischer F (1978) Zur Frage der alten Landoberflächen in den Vogesen und im Oberrheingraben. Annales Universitatis Saraviensis 14:42–58Google Scholar
  30. Floettmann T, Oncken O (1992) Constraints on the evolution of the Mid German crystalline rise; a study of outcrops west of the River Rhine. Geol Rundsch 81:515–543Google Scholar
  31. Golwer A (1968) Paläogeographie des Hanauer Beckens im Oligozän und Miozän. Notizbl hess L-Amt Bodenforsch 96:157–184Google Scholar
  32. Groschopf R, Kessler G, Leiber J, Maus HJ, Ohmert O, Schreiner A, Wimmenauer W (1996) Erläuterungen zu Blatt Freiburg i Br. Geol Karte von Baden-Württemb 1:50000. Stuttgart, p 364Google Scholar
  33. Groshong RH (1996) Construction and validation of extensional cross sections using lost area and strain, with application to the Rhine Graben. In: Buchanan PG, Nieuwland DA (eds) Modern developments in structural interpretation. Geol Soc Spec Publ 99:79–87Google Scholar
  34. Grosse S, Behr HJ, Edel JB, Heinrichs T (1992) The gravity field along the central segment of the EGT. Tectonophysics 207:97–121CrossRefGoogle Scholar
  35. Gutscher MA (1995) Crustal structure and dynamics in the Rhine Graben and the Alpine foreland. Geophys J Int 122:617–636Google Scholar
  36. Haenel R, Staroste E (1988) Atlas of geothermal resources in the European Community, Austria and Switzerland. Schäfer, Hannover, pp 1–74Google Scholar
  37. Haq BU, Hardenbol J, Vail R (1988) Mesozoic and Cenozoic chronostratigraphy and eustatic cycles. Soc Econ Palaeontol Geol Soc Spec Pub 42:71–108Google Scholar
  38. Harthill N (2002) The tectonic basis of the geothermal potential of the Oberrheingraben. Abstract Volume to 7th Geothermische Fachtagung, pp 143–151Google Scholar
  39. Heling D (1969) Relationships between initial porosity of Tertiary argillaceous sediments and palaeosalinity in the Rhinegraben (SW-Germany). J Sedim Petrology 39:246–254Google Scholar
  40. Henk A (1993) Subsidenz und Tektonik des Saar-Nahe-Beckens (SW-Deutschland). Geol Rundsch 82:3–19CrossRefGoogle Scholar
  41. Henk A (1997) Gravitational orogenic collapse vs plate boundary stresses: a numerical modelling approach to the Permo-carboniferous evolution of Central Europe. Geol Rundsch 86:39–55CrossRefGoogle Scholar
  42. Henk A (1998) Thermomechanische Modellierungen zur postkonvergenten Krustenequilibrierung in den Varisciden. Geotekt Forsch 90:1–124Google Scholar
  43. Hill DP (1992) A note on ambient pore pressure, fault-confined pore pressure, and apparent friction. Bull Seis Soc Am 83:583–586Google Scholar
  44. Holbrook WS, Gajewski D, Krammer A, Prodehl C (1988) An interpretation of wide-angle compressional and shear wave data in Southwest Germany: Poisson’s ratio and petrological implications. J Geophys Res 93:12081–12106Google Scholar
  45. Illies JH (1962) Prinzipien der Entwicklung des Rheingrabens, dargestellt am Grabenabschnitt bei Karlsruhe. Mitt Geol Staatsinst Hamburg 31:58–121Google Scholar
  46. Illies JH (1975) Recent and palaeo-intraplate tectonics in stable Europe and the Rhinegraben rift system. Tectonophysics 29:251–264CrossRefGoogle Scholar
  47. Illies JH, Greiner G (1979) Holocene movements and state of stress in the Rhine graben rift system. Tectonophysics 52:349–359CrossRefGoogle Scholar
  48. Krohe A (1992) Structural evolution of intermediate-crustal rocks in a strike slip and extensional setting (Variscan Odenwald, SW Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. Tectonophysics 205:357–386CrossRefGoogle Scholar
  49. Lacombe O, Angelier J, Byrne D, Dupin JM (1993) Eocene-Oligocene tectonics and kinematics of the Rhine-Saone continental transform zone (Eastern France). Tectonics 12:874–888Google Scholar
  50. Larroque JM, Laurent P (1988) Evolution of the stress field in the south of the Rhine Graben from the Eocene to the present. Tectonophysics 148:41–58CrossRefGoogle Scholar
  51. Laubscher H (1992) Jura kinematics and the Molasse basin. Eclogae geol Helv 85:653–675Google Scholar
  52. Laubscher H (2001) Plate interactions at the southern end of the Rhine Graben. Tectonophysics 343:1–19CrossRefGoogle Scholar
  53. Lysak SV (1992) Heat flow variations in continental rifts. Tectonophysics 208:309–323CrossRefGoogle Scholar
  54. Maass R (1988) Die Südvogesen zu variszischer Zeit. N Jb Geol Paläont Mh 10:611–638Google Scholar
  55. Mackwell SJ, Zimmermann ME, Kohlstedt DL (1998) High-temperature deformation of dry diabase with application to tectonics on Venus. J Geophys Res 103:975–984CrossRefGoogle Scholar
  56. Mandl G (2000) Faulting in brittle rocks: an introduction to the mechanics of tectonic faults. Springer, Berlin Heidelberg New York, pp 1–434Google Scholar
  57. Marell D (1989) Das Rotliegende zwischen Odenwald und Taunus. Geol Abh Hessen 89:1–128Google Scholar
  58. Mart Y, Dauteuil O (2000) Analogue experiments of propagation of oblique rifts. Tectonophysics 316:121–132CrossRefGoogle Scholar
  59. Mayer G, Mai PM, Plenefish T, Echtler H, Lüschen E, Wehrle V, Müller B, Bonjer KP, Prodehl C, Fuchs K (1997) The deep crust of the southern Rhine Graben: reflectivity and seismicity as images of dynamic processes. Tectonophysics 275:15–40CrossRefGoogle Scholar
  60. Meier L (1989) Ein Modell für die Tiefenstruktur und Kinematik im Bereich des nördlichen Rheingrabens. PhD thesis, University of Karlsruhe, pp 1–117Google Scholar
  61. Meier L, Eisbacher G (1991) Crustal kinematics and deep structure of the northern Rhine Graben. Tectonics 10:621–630Google Scholar
  62. Meissner R, Bortfeld RK (1990) DEKORP Atlas. Springer, Berlin Heidelberg New YorkGoogle Scholar
  63. Mengel K, Sachs PM, Stosch HG, Wörner G, Loock G (1991) Crustal xenoliths from the Cenozoic fields of West Germany: implications for structure and composition of the continental crust. Tectonophysics 195:271–289CrossRefGoogle Scholar
  64. Michon L, Van Balen RT, Merle O, Pagnier H (2003) The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics 367:101–126CrossRefGoogle Scholar
  65. Pfiffner OA, Schlunegger F, Buiter SJH (1998) The Swiss Alps and their peripheral foreland basin: stratigraphic response to deep crustal processes. Tectonics 21(1):10.129/2000TC9000039Google Scholar
  66. Plaumann S (1991) Die Schwerekarte 1:500 000 der Bundesrepublik Deutschland (Bouguer-Anomalien), Blatt Mitte. Geol Jb E 46:3–16Google Scholar
  67. Plaumann S, Groschopf R, Schädel K (1986) Kompilation einer Schwerekarte und einer geologischen Karte für den mittleren und nördlichen Schwarzwald mit einer Interpretation gravimetrischer Detailvermessungen. Geol Jb E 33:15–30Google Scholar
  68. Prodehl C, Mueller St, Glahn A, Gutscher MA, Haak V (1992) Lithospheric cross sections of the European Cenozoic rift system. Tectonophysics 208:113–138CrossRefGoogle Scholar
  69. Roll A (1979) Versuch einer Volumenbilanz des Oberrheintalgrabens und seiner Schultern. Geol Jb A 52:3–82Google Scholar
  70. Rousset D, Bayer R, Guillon D, Edel JB (1992) Structure of the southern Rhine Graben from gravity and reflection seismic data (ECORS-DEKORP program). Tectonophysics 221:135–153CrossRefGoogle Scholar
  71. Royer JJ, Danis M (1988) Steady state geothermal model of the crust and the problem of the boundary conditions; application to a rift system, the southern Rhine Graben. Tectonophysics 156:239–255CrossRefGoogle Scholar
  72. Schad A (1962) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh Geol L-Anst Baden-Württemberg 4:29–40Google Scholar
  73. Schumacher ME (2002) Upper Rhine Graben: role of pre-existing structures during rift evolution. Tectonics 21:10.1029/2001TC900022CrossRefGoogle Scholar
  74. Seipold U (1998) Temperature-dependence of thermal transport properties of crystalline rocks—a general law. Tectonophysics 291:161–171CrossRefGoogle Scholar
  75. Seyferth M, Henk A (2000) Deformation, metamorphism and exhumation: quantitative models for a continental collision zone in the Variscides. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the variscan belt. Geol Soc Spec Publ 179:217–230Google Scholar
  76. Shelton G, Tullis J (1981) Experimental flow laws for crustal rocks. EOS 62:396Google Scholar
  77. Sibson RH (1974) Frictional constraints on thrust, wrench, and normal faults. Nature 242:542–544Google Scholar
  78. Sissingh W (1998) Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben, and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300:249–284CrossRefGoogle Scholar
  79. Straub EW (1962) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh Geol L-Anst Baden-Württemberg 4:123–136Google Scholar
  80. Strehlau J, Meissner R (1987) Estimation of crustal viscosities and shear stresses from an extrapolation of experimental steady state flow data. In: Fuchs K, Froidevaux C (eds) Composition, structure and dynamics of the lithosphere-asthenosphere system. Geodyn Ser Am Geophys Union 16:69–87Google Scholar
  81. Teichmüller M, Teichmüller R (1979) Zur geothermischen Geschichte des Oberrheingrabens. Zusammenfassung und Auswertung eines Symposiums. Fortschr Geol Rheinld u Westf 27:109–120Google Scholar
  82. Wenzel F, Brun JP, ECORS-DEKORP team (1991) A deep reflection seismic line across the northern Rhine Graben. Earth Planet Sci Lett 104:140–150CrossRefGoogle Scholar
  83. Wilks KR, Carter NL (1990) Rheology of some continental lower crustal rocks. Tectonophysics 182:57–77CrossRefGoogle Scholar
  84. Zeiss S, Gajewski D, Prodehl C (1990) Crustal structure of southern Germany from seismic refraction data. Tectonophysics 176:59–86CrossRefGoogle Scholar
  85. Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Geologisches InstitutUniversity of FreiburgGermany

Personalised recommendations