Advertisement

International Journal of Earth Sciences

, Volume 93, Issue 6, pp 1008–1024 | Cite as

Thermotectonic evolution of an extensional dome: the Cenozoic Osogovo–Lisets core complex (Kraishte zone, western Bulgaria)

  • A. Kounov
  • D. Seward
  • D. Bernoulli
  • J.-P. BurgEmail author
  • Z. Ivanov
Original paper

Abstract

The Kraishte region of Bulgaria is located at the junction of the Balkanides and Hellenides-Dinarides tectonic belts. Fission-track analysis on both apatites and zircons documents the Cenozoic exhumation of a Precambrian basement bounded by low-angle detachments. Late Eocene–Oligocene extension began prior to 47 Ma and was dominantly in a top-to-the-southwest direction, confirmed by the sense of younging of apatite and zircon ages. This crustal extension controlled the formation of half-graben sedimentary basins on the hanging walls of the detachments. Thermal modelling of these hanging wall units provides evidence for heat transfer across the detachments from a relatively warm rising footwall. From 32 to 29 Ma, pervasive magmatic activity resulted in the emplacement of rhyolitic to dacitic subvolcanic bodies and dykes, along with intrusion of the Osogovo granite. The results give evidence for extension in the southern Balkan older than, and separated from, the Miocene to Quaternary Aegean extension. This might reflect transtension during northeastward extrusion and rotation of continental fragments around the western boundary of Moesia. Eocene–Oligocene extension seems to have been controlled by the distribution of earlier thickening all around the Carpatho-Balkanic orocline, which is reflected by the Cretaceous emplacement of the Morava Nappe in the Kraishte.

Keywords

Fission track Core complex Heat transfer Extension Bulgaria 

Notes

Acknowledgements

This study was supported by the ETH Zurich, project No. 0-20657-99. U-Pb SHRIMP ages were carried out by M. Fanning, ANU, Australia. The University of Sofia supported Z. Ivanov. We thank the entire Structural Geology and Tectonic research group from Sofia University, Bulgaria, for their advice and particularly their support in the field. The authors also thank L.-E. Ricou for enlightening discussions and E. Sobel for detailed attention to the manuscript.

References

  1. Aiello E, Bartolini C, Boccaletti M, Gocev P, Karagjuleva J, Kostadinov V, Manetti P (1977) Sedimentary features of the Srednogorie zone (Bulgaria): an upper Cretaceous intra-arc basin. Sediment Geol 19:39–68CrossRefGoogle Scholar
  2. Berggren WA, Kent DV, Swisher CCI, Aubry MP (1995) A revised Cenozoic geochronology and chronostratigraphy. Geochronology, time scales and global stratigraphic correlation. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation special publication. SEPM (Soc Sediment Geol) Spec. Publ. 54:129–212Google Scholar
  3. Boccaletti M, Manetti P, Peccerillo A (1974) Hypothesis on the plate tectonic evolution of the Carpatho-Balkan Arcs. Earth Planetary Sci Lett 23(2):193–198CrossRefGoogle Scholar
  4. Bonchev E (1936) Versuch einer tektonischen Synthese Westbulgariens. Geologica Balcanica 2(3):5–48Google Scholar
  5. Bonchev E, Karagiuleva J, Kostadinov V, Manolov Z, Kamenova J, Dinkov E, Bakalova D, Manolova R (1960) Grundlagen der Tektonik von Kraiste mit den angrenzenden Gebieten. Travaux sur la Géologie de Bulgarie. Série Stratigraphie et Tectonique 1:7–92 (in Bulgarian; abstracts in Russian and German)Google Scholar
  6. Bonev K, Ivanov Z, Ricou L-E (1995) Dénudation tectonique au toit du noyau métamorphique rhodopien-macédonien: la faille normale ductile de Gabrov Dol (Bulgarie). Bulletin de la Société géologique de France 166(1):49–58Google Scholar
  7. Burchfiel BC (1980) Eastern European Alpine System and the Carpathian Orocline as an example of collision tectonics. Tectonophysics 63:31–61CrossRefGoogle Scholar
  8. Burchfiel CB, Nakov R, Tzankov T, Royden L (2000) Cenozoic extension in Bulgaria and northern Greece: the northern part of the Aegean extensional regime. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area. Geol Soc Lond Spec Publ 173:325–352Google Scholar
  9. Burg J-P, Ivanov Z, Ricou L-E, Dimor D, Klain L (1990) Implications of shear-sense criteria for the tectonic evolution of the Central Rhodope massif, southern Bulgaria. Geology 18:451–454CrossRefGoogle Scholar
  10. Burg J-P, Klain L, Ivanov Z, Ricou L-E, Dimov D (1996) Crustal-scale thrust complex in the Rhodope Massif. Evidence from structures and fabrics. In: Nairn AEM, Ricou L-E, Vrielynck B, Dercourt J (eds) The ocean basins and margins: the Tethys Ocean 8. Plenum Publishing Corporation, New York, pp 125–149Google Scholar
  11. Corrigan JD (1993) Apatite fission-track analysis of Oligocene strata in South Texas, U.S.A.: testing annealing models. Chem Geol 104:227–249CrossRefGoogle Scholar
  12. Dewey JF, Pitman III WC, Ryan WBF, Bonin J (1973) Plate tectonics and the evolution of the Alpine System. Geol Soc Am Bull 84:3137–3180Google Scholar
  13. Dimitrov C (1931) Contribution to the geology and petrography of the Konyavo Mountain. Rev Bulgarian Geol Soc 3:3–52 (in Bulgarian)Google Scholar
  14. Dimitrova E (1964) Petrologie des kristallinen Sockels des Osogovo Gebirges. Bull Geol Inst Ser Stratigr Lithol 13:99–110 (in Bulgarian, abstract in German)Google Scholar
  15. Dumitru TA (1995) A new computer automated microscope stage system for fission-track analysis. Nuclear Tracks Radiat Meas 21:575–580Google Scholar
  16. Ehlers TA, Armstrong PA, Chapman DS (2001) Normal fault thermal regimes and the interpretation of low-temperature thermochronometers. Phys Earth Planet Interiors 126:179–194CrossRefGoogle Scholar
  17. Galbraith RF, Laslett GM (1993) Statistical models for mixed fission-track ages. Nuclear Tracks Radiat Meas 21:459–470CrossRefGoogle Scholar
  18. Gallagher K (1995) Evolving temperature histories from apatite fission-track data. Earth Planet Sci Lett 136:421–435CrossRefGoogle Scholar
  19. Gautier P, Brun J-P (1994) Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia Islands). Geodinamica Acta 7:57–85Google Scholar
  20. Gautier P, Brun J-P, Moriceau R, Sokoutis D, Martinod J, Jolivet L (1999) Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315:31–72CrossRefGoogle Scholar
  21. Gealey WK (1988) Plate tectonic evolution of the Mediterranean—Middle East region. Tectonophysics 155:285–306CrossRefGoogle Scholar
  22. Graf J (2001) Alpine tectonics in Western Bulgaria: Cretaceous compression of the Kraishte region and Cenozoic exhumation of the crystalline Osogovo–Lisets Complex. Unpublished PhD Thesis, ETH-ZürichGoogle Scholar
  23. Grasemann B, Mancktelow NS (1993) Two-dimensional thermal modelling of normal faulting: the Simplon fault zone, Central Alps, Switzerland. Tectonophysics 225:155–165CrossRefGoogle Scholar
  24. Green PF, Duddy IR (1989) Some comments on paleotemperature estimation from apatite fission-track analysis. J Petroleum Geol 12:111–114Google Scholar
  25. Harkovska A, Pecskay Z (1997) The Tertiary magmatism in Ruen magmato-tectonic zone (W. Bulgaria)—a comparision of new K–Ar ages and geological data. In: Boev B, Serafimovski T (eds) Magmatism, metamorphism and metallogeny of the Vardar Zone and Serbo-Macedonian Massif. Faculty of Mining Geology, Stip—Dojran, Republic of Macedonia, pp 137–142Google Scholar
  26. Haydoutov I, Kolcheva K, Daieva L (1994) The Struma Diorite Fm from Vlahina block, SW Bulgaria. Rev Bulgarian Geol Soc 55:9–35Google Scholar
  27. Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Isot Geosci 1:285–317Google Scholar
  28. Ivanov Z (1988) Aperçu général sur l’évolution géologique et structurale du massif des Rhodopes dans le cadre des Balkanides. Bulletin de la Société géologique de France (8)4:227–240Google Scholar
  29. Jolivet L, Faccenna C, D’Agostino N, Fournier M, Worrall D (1999) The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics. Geol Soc Lond Spec Publ 164:21–53Google Scholar
  30. Kilias A, Falakis G, Moundrakis D (1997) Alpine tectonometamorphic history of the Serbomacedonian metamorphic rocks: implications for the Tertiary unroofing of the Serbomacedonian-Rhodope metamorphic complexes (Macedonia, Greece). Miner Wealth 105:9–27Google Scholar
  31. Kober L (1928) Der Bau der Erde. Borntraeger, Berlin, p 499Google Scholar
  32. Kounov A (2003) Thermotectonic evolution of Kraishte, western Bulgaria. Unpublished PhD thesis, ETH-ZürichGoogle Scholar
  33. Krohe A, Mposkos E (2002) Multiple generation of extensional detachments in the Rhodope Mountains (northern Greece) evidence of episodic exhumation of high-pressure rocks. In: Blundell DJ, Neubauer F, von Quadt A (eds) The timing and of major ore deposits in an evolving orogen. Geol Soc Lond Spec Publ 204:151–178Google Scholar
  34. Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite; 2. A quantitative analysis. Chem Geol 65:1–13CrossRefGoogle Scholar
  35. Liati A, Gebauer D (1999) Constraining the prograde and retrograde P-T-t path of Eocene H P rocks by SHRIMP dating of different zircon domains: inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib Miner Petrol 135:340–354CrossRefGoogle Scholar
  36. Lister GS, Banga G, Feenstra A (1984) Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12(4):221–225Google Scholar
  37. Moskovski S (1968) Tectonic of the Pianec grabens complex south of Kjustendil. Bull Geol Inst Ser Stratigr Lithol 17:143–158 (in Russian)Google Scholar
  38. Moskovski S (1969) Tektonik eines Teiles des Pijanec-Grabenkomplexes südlich von Kjustendil. Störungen. Annuaire de l’Université de Sofia, Faculté de Géologie et Géographie 1(61):141–156 (in Bulgarian, abstract in German)Google Scholar
  39. Moskovski S (1971) On the sequence in the formation of Paleogene–Neogene graben structures in the Kraishtides in Bulgaria. Rev Bulgarian Geol Soc 32(1):21–31 (In Bulgarian, abstract in English)Google Scholar
  40. Moskovski S, Harkovska A (1973) Main stages in the Late Alpine development of some fault zones in a part of South-Western Bulgaria. Annuaire de l’Université de Sofia, Faculté de Géologie et Géographie 1(65):73–84 (in Bulgarian, abstract in English)Google Scholar
  41. Moskovski S, Shopov V (1965) Stratigraphy of the Paleogene and the resedimentation phenomena (olistostromes) related to it in Pyanets area, Kjustendil district (SW Bulgaria). Bull Geol Inst Sofia Stratigr Lithol 16:189–209 (In Bulgarian, abstract in English)Google Scholar
  42. Petrov N (2001) Petrostructural studies in the southern and southeastern parts of the Osogovo–Lisets dome. Unpublished Diploma thesis, SofiaGoogle Scholar
  43. Ricou L-E (1994) Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to South-eastern Asia. Geodinamica Acta 7:169–218Google Scholar
  44. Ricou L-E, Burg J-P, Godfriaux I, Ivanov Z (1998) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta 11:285–309CrossRefGoogle Scholar
  45. Schmid SM, Berza T, Diaconescu V, Froitzheim N, Fügenschuh B (1998) Orogen-parallel extension in the southern Carpathians. Tectonophysics 297:209–228CrossRefGoogle Scholar
  46. Seward D (1989) Cenozoic basin histories determined by fission-track dating of basement granites, South Island, New Zealand. Chem Geol (Isotope Geoscience Section) 79:31–48Google Scholar
  47. Seward D, Grujic D, Schreurs G (2004) An insight into the breakup of Gondwana—identifying events through low temperature thermochronology from the basement rocks of Madagascar. Tectonics 23:TC3007, doi:10.1029/2003TC001556Google Scholar
  48. Spassov C (1973) Stratigraphie des Devons in Sudwest-Bulgarien. Bull Geol Inst Ser Stratigr Lithol 22:5–38 (in Bulgarian, abstract in German)Google Scholar
  49. Stampfli G, Marcoux J, Baud A (1991) Tethyan margins in space and time. Palaeogeogr Palaeoclimatol Palaeoecol 87:373–409CrossRefGoogle Scholar
  50. Stephanov A, Dimitrov Z (1936) Geologische Untersuchungen im Kustendiler Gebiet. Rev Bulgarian Geol Soc 8(3):1–28 (in Bulgarian, abstract in German)Google Scholar
  51. Tapponnier P (1977) Evolution tectonique du système alpin en Méditerranée: poinçonnement et écrasement rigide-plastique. Bulletin de la Société géologique de France 7–19:437–460Google Scholar
  52. Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304CrossRefGoogle Scholar
  53. Van Den Driessche J, Brun J-P (1991–1992) Tectonic evolution of the Montagne Noire (French Massif Central): a model of extensional gneiss dome. Geodinamica Acta 5:85–99Google Scholar
  54. Vardev N (1987) Structure of the Ruen ore district. Unpublished PhD Thesis, SofiaGoogle Scholar
  55. Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental study. Chem Geol 122:249–258CrossRefGoogle Scholar
  56. Zagorchev I (1980) Early Alpine deformations in the red beds within the Poletinci-Skrino fault zone. I. Lithostratigraphic features in light of structural studies. Geologica Balcanica 10(2):37–60 (in Russian, abstract in English)Google Scholar
  57. Zagorchev I (1984) The importance of overthrusts in the Alpine structure of Kraistids. Geologica Balcanica 14(4):37–64 (in Russian, abstract in English)Google Scholar
  58. Zagorchev I (1993) Radomir and Bosilegrad map sheets: explanatory notes. In: Geological map of Bulgaria on scale 1:100 000, SofiaGoogle Scholar
  59. Zagorchev IS (1996) Geological heritage of the Balkan Peninsula: geological setting (an overview). Geologica Balcanica 26(2):3–10Google Scholar
  60. Zagorchev I (2001) Introduction to the geology of SW Bulgaria. Geologica Balcanica 31(1–2):3–52Google Scholar
  61. Zagorchev I, Ruseva M (1982) Nappe structure of the southern parts of the Osogovo Mts. and the Pijanec region (SW Bulgaria). Geologica Balcanica 12(3):35–57 (in Russian, abstract in English)Google Scholar
  62. Zagorchev I, Ruseva M (1993) Kriva Palanka and Kjustendil map sheets: explanatory notes. In: Geological map of Bulgaria on scale 1:100 000, SofiaGoogle Scholar
  63. Zagorchev I, Popov P, Ruseva M (1989) Paleogene stratigraphy in a part of SW Bulgaria. Geologica Balcanica 19(6):41–69 (In Russian, with English abstract)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Kounov
    • 1
    • 3
  • D. Seward
    • 1
  • D. Bernoulli
    • 1
  • J.-P. Burg
    • 1
    Email author
  • Z. Ivanov
    • 2
  1. 1.Geologisches InstitutETH and Universität ZürichZurichSwitzerland
  2. 2.Faculty of Geology and GeographyUniversity Kliment OchridskiSofiaBulgaria
  3. 3.Department of Geological SciencesUniversity of Cape TownRondebosch, Cape TownSouth Africa

Personalised recommendations