International Journal of Earth Sciences

, Volume 93, Issue 6, pp 1042–1065 | Cite as

Yaxcopoil-1 and the Chicxulub impact

  • Wolfgang Stinnesbeck
  • Gerta Keller
  • Thierry Adatte
  • Markus Harting
  • Doris Stüben
  • Georg Istrate
  • Utz Kramar
Original Paper


CSDP core Yaxcopoil-1 was drilled to a depth of 1,511 m within the Chicxulub crater. An organic-rich marly limestone near the base of the hole (1,495 to 1,452 m) was deposited in an open marine shelf environment during the latest Cenomanian (uppermost Rotalipora cushmani zone). The overlying sequence of limestones, dolomites and anhydrites (1,495 to 894 m) indicates deposition in various carbonate platform environments (e.g., sabkhas, lagoons). A 100-m-thick suevite breccia (894–794 m) identifies the Chicxulub impact event. Above the suevite breccia is a dolomitic limestone with planktic foraminiferal assemblages indicative of Plummerita hantkeninoides zone CF1, which spans the last 300 ky of the Maastrichtian. An erosional surface 50 cm above the breccia/dolomite contact marks the K/T boundary and a hiatus. Limestones above this contact contain the first Tertiary planktic foraminifera indicative of an upper P. eugubina zone P1a(2) age. Another hiatus 7 cm upsection separates zone P1a(2) and hemipelagic limestones of planktic foraminiferal Zone P1c. Planktic foraminiferal assemblages of Zone Plc to P3b age are present from a depth of 794.04 up to 775 m. The Cretaceous carbonate sequence appears to be autochthonous, with a stratigraphic sequence comparable to late Cretaceous sediments known from outside the Chicxulub crater in northern and southern Yucatan, including the late Cenomanian organic-rich marly limestone. There is no evidence that these sediments represent crater infill due to megablocks sliding into the crater, such as major disruption of sediments, chaotic changes in lithology, overturned or deep dipping megablocks, major mechanical fragmentation, shock or thermal alteration, or ductile deformation. Breccia units that are intercalated in the carbonate platform sequence are intraformational in origin (e.g., dissolution of evaporites) and dykes are rare. Major disturbances of strata by the impact therefore appear to have been confined to within less than 60 km from the proposed impact center. Yaxcopoil-1 may be located outside the collapsed transient crater cavity, either on the upper end of an elevated and tilted horst of the terrace zone, or even outside the annular crater cavity. The Chicxulub site thus records a large impact that predates the K/T boundary impact and mass extinction.


Chicxulub Impact crater K/T boundary Mexico Biostratigraphy 



We gratefully acknowledge access to the Yaxcopoil-1 core and logistic support during on site core analysis by the Instituto de Geofísica of the Universidad Nacional Autónoma de México.

This study has benefited from critical comments and suggestions by reviewer Paul Wignall and from discussions with A. Schafhauser, M. Caron, J.G. Lopez-Oliva, O. Morton and J. Urrutia-Fucugauchi. We thank M. Dadras (Institut de Microtechnique, Neuchâtel University, Switzerland for ESEM-EDX analyses. Research was supported by the German Science Foundation grants STI 128/7-1 to 3 (WS), and STU 169/10-1 to 3 (DS), the US NSF grant EAR-0207407 (GK), and the Swiss National Fund No. 8220-028367 (TA).


  1. Adatte T, Stinnesbeck W, Keller G (l996) Lithostratigraphic and mineralogical correlations of near-K/T boundary clastic sediments in northeastern Mexico: implications for mega-tsunami or sea level changes? Geol Soc Am Spec Pap 307:197–210Google Scholar
  2. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108Google Scholar
  3. Boggs S (1987) Principles of sedimentology and stratigraphy. Merrill Publ Co, Columbus Toronto London Melbourne, 784 ppGoogle Scholar
  4. Bohor BF, Foord EF, Ganapathy R (1986) Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain. Earth Planet Sci Lett 81:57–66CrossRefGoogle Scholar
  5. Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary Boundary impact crater on the Yucatan Peninsula. Geology 19:867–869CrossRefGoogle Scholar
  6. Brett R (1992) The Cretaceous-Tertiary extinction: a lethal mechanism involving anhydrite target rocks. Geochim Cosmochim Acta 56:3603–3606CrossRefGoogle Scholar
  7. Buffler RT, Schlager W et al. (1984) Initial reports Deep-Sea Drilling Project Volume 77: Washington, DC, US Government Printing Office, 747 ppGoogle Scholar
  8. Chamley H (1989) Clay sedimentology. Springer, Berlin Heidelberg New York, 623 ppGoogle Scholar
  9. Deer WA, Howie RA, Zussman J (1993) An introduction to the rock-forming minerals, 2nd edn. Longman Sci & Tech, 696 ppGoogle Scholar
  10. Dressler BO, Sharpton VL, Marín LE (2003) Chicxulub Yax-1 breccias: whence they come? Lunar Planet Sci 34, Abs 1259Google Scholar
  11. Dressler BO, Sharpton VL, Morgan J, Buffler R, Moran D, Smit J, Stöffler D, Urrutia J (2003) Investigating a 65-Ma-old smoking gun: deep drilling of the Chicxulub Impact Structure. EOS (Trans Am Geophys Union) 84 (14) pp 125, 130Google Scholar
  12. El Goresy A, Chao ECT (1976) Evidence of the impacting body of the Ries crater. The discovery of Fe Cr Ni veinlets below the crater bottom. Earth Planet Sci Lett 31:330–340CrossRefGoogle Scholar
  13. Ellwood BB, MacDonald WD, Wheeler C, Benoist SL (2003) The K-T boundary in Oman: identified using magnetic susceptibility field measurements with geochemical confirmation. Earth Planet Sci Lett 206:529–540CrossRefGoogle Scholar
  14. Espitalié J, Deroo G, Marquis F (1986) La pyrolyse Rock-Eval et ses applications. Partie 3. Revue Inst Fr du Pétrole 41:1Google Scholar
  15. Fourcade E, Piccioni L, Escribá J, Rosselo E (1999) Cretaceous stratigraphy and palaeoenvironments of the Southern Petén Basin, Guatemala. Cretaceous Res 20:793–811CrossRefGoogle Scholar
  16. Haggerty SE (1976) Opaque minerals in terrestrial igneous rocks. MSA Short course notes, vol 4. In: Rumble III D (ed) Oxide minerals, vol 4. Hg101, 300 ppGoogle Scholar
  17. Hay RL (1977) Geology of zeolites in sedimentary rocks MSA Short course notes. In: Mumpton F (ed) Mineralogy and geology of natural zeolites, vol 4, pp 53–64Google Scholar
  18. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo AZ, Jacobson SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary Boundary impact crater on the Yucatan Peninsula. Geology 19:867–869CrossRefGoogle Scholar
  19. Hsü KJ, He Q, McKenzie JA, Weissert H, Perch-Nilsen K, Oberhänsli H, Kelts K, LaBrecque J, Tauxe L, Krähenbuhl U, Percival SF Jr, Wright R, Karpoff A, Peterson N, Tucker P, Poore RZ, Gombos A Jr, Pisciotti K, Varman MF Jr, Schreiber E (1982) Mass mortality and its environmental and evolutionary consequences. Science 216:249–256Google Scholar
  20. Iijima A (1980) Geology of natural zeolites and zeolitic rocks. Rees LVC (ed) Proceed 5th Int Conf Zeolites, Heyden, pp 103–118Google Scholar
  21. Ivanov BA, Badukov D, Yakovlev OI, Gerasimov MV, Dikov YP, Pope K, Ocampo A (1996) Degassing of sedimentary rocks due to Chicxulub Impact: hydrocode and physical simulations. pp 125–140. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary Event and other catastrophes in earth history. Boulder, Colorado, Geol Soc Am Spec Pap 307Google Scholar
  22. Izett GA (1991) Tektites in the Cretaceous-Tertiary Boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis. J Geophys Res 96:20879–20905Google Scholar
  23. Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN, Tocher BA, Horne D, Rosenfeld A (1988) Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event. Cretaceous Res 9:3–103Google Scholar
  24. Keller G, Adatte T, Stinnesbeck W, Affolter M, Schilli L, Lopez-Oliva JG (2002) Multiple spherule layers in the late Maastrichtian of northeastern Mexico. Geol Soc Am Spec Publ 356:145–161Google Scholar
  25. Keller G, Adatte T, Stinnesbeck W, Stüben D, Kramar U, Berner Z, Li L, Von Salis Perich-Nielsen K (1998) The Cretaceous-Tertiary transition on the shallow Saharan Platform of Southern Tunisia. Geobios 30(7):951–975Google Scholar
  26. Keller G, Adatte T, Stinnesbeck W, Stueben D, Berner Z (2001) Age, chemo- and biostratigraphy of Haiti spherule-rich deposits: a multi-event K-T scenario. Can J Earth Sci 38:197–227CrossRefGoogle Scholar
  27. Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254CrossRefGoogle Scholar
  28. Keller G, MacLeod N, Lyons JB, Officer CB (1993) Is there evidence for Cretaceous/Tertiary boundary-age deep water deposits in the Caribbean and Gulf of Mexico? Geology 21:776–780CrossRefGoogle Scholar
  29. Keller G, Stinnesbeck W Adatte T, Stueben D (2003a) Multiple impacts across the Cretaceous-Tertiary boundary. Earth Sci Rev 62:327–363CrossRefGoogle Scholar
  30. Keller G, Stinnesbeck W, Adatte T, Holland B, Stüben D, Harting M, de Leon C, de la Cruz J (2003b) Spherule deposits in Cretaceous-Tertiary boundary sediments in Belize and Guatemala. Geol Soc Lond 160:783–795Google Scholar
  31. Kelley PS, Gurov E (2002) Boltysh, another end Cretaceous impact. Science 37:1031–1043Google Scholar
  32. Kenkmann T, Wittmann A, Scherler D, Schmitt RT (2003) Deformation features of the Cretaceous units of the ICDP-Chicxulub drill core Yax-1. Geophys Res Abs 5, 05098, European Geophys Soc 2003Google Scholar
  33. Kring DA (1995) The dimensions of the Chicxulub impact crater and impact melt sheet. J Geophys Res 100:16979–16986CrossRefGoogle Scholar
  34. Kring DA (2000) Impact events and their effects on the origin, evolution, and distribution of life. GSA Today 10:2–5Google Scholar
  35. Kübler B (1987) Cristallinite de l’illite, méthods normalisées de préparations, méthodes normalisées de measures. Neuchâtel, Suisse, Cahiers Inst Géologie, Sér ADX 1, 13 ppGoogle Scholar
  36. Kübler B (1997) Concomitant alteration of clay minerals and organic matter during burial diagenesis. In: Paquet H, Clauer N (eds) Soils and sediments. Springer, Berlin Heidelberg New York, pp 327–363Google Scholar
  37. Kyte FT, Smit J (1986) Regional variations in spinel composition: an important key to the Cretaceous-Tertiary event. Geology 14:485–487Google Scholar
  38. Lafargue E, Espitalié J, Marquis F, Pillot D (1996) Rock-Eval 6, applications in hydrocarbon exploration, production and soil contamination studies Vinci Technologies, Rock-Eval user’s manualGoogle Scholar
  39. Lopez Ramos E (1973) Estudio geológico de la Peninsula de Yucatan. Bol Assoc Mex Geol Petrol 25 (1–3):23–76Google Scholar
  40. Lopez Ramos E (1975) Geological summary of the Yucatan Peninsula, In: AEM Nairn, Stehli FG (eds) The ocean basins and margins, vol 3. The Gulf of Mexico and the Caribbean. Plenum Press, New York, pp 257–282Google Scholar
  41. Marín LE, Sharpton VL, Urrutia-Fucugauchi J, Sikora P, Carney C (1994) The “Upper Cretaceous Unit” in the Chicxulub Multi-ring Basin: new age based on planktic foraminiferal assemblage. Lunar Planet Inst, LPI Contrib 825:77Google Scholar
  42. Marshall RH (1974) Petrology of subsurface mesozoic rocks of the Yucatán platform, Mexico, MS Thesis, New Orleans, Louisiana, Univ of New Orleans, 97 ppGoogle Scholar
  43. Meyerhoff AA, Lyons JB, Officer CB (1994) Chicxulub structure: a volcanic sequence of late Cretaceous age. Geology 21:3–4CrossRefGoogle Scholar
  44. Morgan J, Buffler R, Urrutia-Fucugauchi J, Grieve R (2002) Chicxulub: drilling the K-T Impact Crater Instituto de Geofísica, Universidad Nacional Autónoma de México, Serie: Infraestructura Científica y Desarrollo Tecnológico 4, 39 ppGoogle Scholar
  45. Morgan J, Warner M (1999) Chicxulub: the third dimension of a multi-ring impact basin. Geology 27:407–410CrossRefGoogle Scholar
  46. Odin GS (1975) Les glauconies, PhD Thesis. P et M Curie Univ, Paris, 251 ppGoogle Scholar
  47. Pardo A, Ortiz N, Keller G (1996) Latest Maastrichtian and Cretaceous-Tertiary foraminiferal turnover and environmental changes at Agost Spain. In: MacLeod N, Keller G (eds) Cretaceous-Tertiary boundary mass extinction: biotic and environmental changes. Norton Press, New York, pp 139–171Google Scholar
  48. Pierrazo E, Kring DA, Melosh HJ (1998) Hydrocode modeling of Chicxulub as an oblique impact event and the production of climatically active gases. J Geophys Res 103:28607–28625CrossRefGoogle Scholar
  49. Pope KO (2002) Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology 30(2):99–102CrossRefGoogle Scholar
  50. Pope KO et al. (1997) Energy, volatile production, and climatic effects of the Chicxulub Cretaceous-Tertiary impact. J Geophys Res 102:21645–21654CrossRefPubMedGoogle Scholar
  51. Rebolledo Vieyra M, Urrutia-Fucugauchi J, Marín L, Trejo García A, Sharpton VL, Soler-Arechalde AM (2000) UNAM scientific shallow drilling program of the Chicxulub impact crater. Intl Geol Rev 42:928–940Google Scholar
  52. Reed SJB (1996) Electron microprobe analysis and scanning electron microscopy in geology. Cambridge Univ Press, 201 ppGoogle Scholar
  53. Robin E, Boclet D, Bonte Ph, Froget L, Jehanno C, Rocchia R (1991) The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El Kef (Tunisia), Caravaca (Spain) and Hole 761 C (Leg 122). Earth Planet Sci Lett 107:715–721CrossRefGoogle Scholar
  54. Romein AJT, Smit J (1981) Carbon-oxygen stable isotope stratigraphy of the Cretaceous-Tertiary boundary interval: data from Biarritz section (SW France). Geol Mijnbouw 60:514–544Google Scholar
  55. Schackleton NJ, Hall MA (1984) Carbon isotope data from Leg 74 sediments. In: Moore Jr et al. (eds) Initial Reports Deep Sea Drilling Project 74:613–619Google Scholar
  56. Schafhauser A, Stinnesbeck W, Holland B, Adatte T, Remane J (2004) Lower Cretaceous pelagic limestones in southern Belize: proto-Caribbean deposits on the southeastern Maya block. Am Assoc Petrol Geol Mem (in press)Google Scholar
  57. Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (l987) The Cenomanian-Turonian anoxic event. Stratigraphy and distribution of organic carbon-rich beds and the marine d13C excursion. In: Brooks J, Fleet JA (eds) Marine petroleum source rocks. Am Assoc Petrol Geol Bull 64:67–87Google Scholar
  58. Sharpton VL, Marin LE, Carney C, Lee S, Ryder G, Schuraytz BC, Sikora P, Spudis PS (1996) A model for the Chicxulub impact basin based on evaluation of geophysical data, well logs and drill core samples. pp 55–74. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary event and other catastrophes in earth history. Boulder, Colorado, Geol Soc Am Spec Pap 307Google Scholar
  59. Sial AN, Ferreira VP, Toselli AJ, Parada MA, Acenolaza FG, Pimentel MM, Alonso RN (2001) Carbon and oxygen isotope compositions of some Upper Cretaceous-Paleocene sequences in Argentina and Chile. Intl Geol Rev 42(10):892–909Google Scholar
  60. Sigurdsson H, Bonté P, Turpin L, Chaussidon M, Metrich N, Steinber M, Pradel P, D’Hondt S (1991) Geochemical constraints on source region of Cretaceous/Tertiary impact glasses. Nature 353:839–842CrossRefGoogle Scholar
  61. Sigurdsson H, D’Hondt S, Carey S (l992) The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol. Earth Planet Sci Lett 109:543–559Google Scholar
  62. Smit J (2004a) Not a single shred... In: The Great Chicxulub debate. Geol Soc Lond, Internet debate:
  63. Smit J (2004b) Chicxulub drilling CSDP, Transition impact to post impact rocks: are controversies real? IODP/ICDP Joint Colloquium (Bremen), IODP-Contributions and AbstractsGoogle Scholar
  64. Smit J, Dressler B, Buffler R, Moran-Zenteno D, Sharpton VL, Stöffler D, Urrutia J, Morgan J (2002) Yaxcopoil-1 drill hole in the Chicxulub impact crater. Geol Soc Am Abstr ProgrGoogle Scholar
  65. Smit J, Lustenhouwer WJ, van der Gaast SJ (2004) Transition of the impact to post-impact rocks in the Yaxcopoil-1 drill hole: no evidence for pre-K/T age of the Chicxulub crater. Geophys Res Abs 6, 03184, EGU, NiceGoogle Scholar
  66. Srodon J, Eberl DD (1987) Illite. In: Bailey SW (ed) Micas. Rev Mineral 13, Miner Soc Am Washington, DC, 584 ppGoogle Scholar
  67. Stewart SA, Allen JP (2002) A 20-km-diameter multi-ringed impact structure in the North Sea. Nature 418(1):520–523CrossRefPubMedGoogle Scholar
  68. Stinnesbeck W, Keller G, de la Cruz J, de Leon, C, MacLeod N, Whittacker JE (1997) The Cretaceous-Tertiary boundary in Guatemala—Limestone breccia deposits from the South Peten Basin. Geol Rund 86:686–709CrossRefGoogle Scholar
  69. Stinnesbeck W, Keller G, Schulte P, Stüben D, Berner Z, Kramar U, Lopez-Oliva JG (2002) The Cretaceous-Tertiary (K/T) boundary transition at Coxquihui, state of Veracruz, Mexico: evidence for an early Danian impact event? J South Am Earth Sci, pp 497–509Google Scholar
  70. Stinnesbeck W, Schulte P, Lindenmaier F, Adatte T, Affolter M, Schilli L, Keller G, Stüben D, Berner Z, Kramar U, Lopez-Oliva JG (2001) Late Maastrichtian age of spherule deposits in northeastern Mexico: implication for Chicxulub scenario. Can J Earth Sci 38:229–238CrossRefGoogle Scholar
  71. Stöffler D, Hecht T, Kenkmann RT, Schmitt T, Wittmann A (2003) Properties, classification, and genetic interpretation of the allochthonous impact formations of the ICDP Chicxulub drill core Yax-1. Geophys Res Abs 5, Nr 07237Google Scholar
  72. Stüben D, Kramar U, Berner Z, Eckhardt D, Stinnesbeck W, Keller G, Adatte T, Heide K (2002a) Two anomalies of platinum group elements above the Cretaceous-Tertiary boundary at Beloc, Haiti: geochemical context and consequences for the impact scenario. Geol Soc Am Spec Pap 356:163–188Google Scholar
  73. Stüben D, Kramar U, Berner Z, Stinnesbeck W, Keller G, Adatte T (2002b) Trace elements, stable isotopes, and clay mineralogy of the Elles II K/T boundary section in Tunisia: Indications for sea level fluctuations and primary productivity. Palaeogeogr Palaeoclimatol Palaeoecol 178(3–4):321–345Google Scholar
  74. Swisher CC, Grajales-Nishimura JM, Montanari A, Margolis SV, Claeys P, Alvarez W, Renne P, Cedillo-Pardo E, Maurasse FJ-M, Curtis GH, Smit J, Williams MO (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958Google Scholar
  75. Urrutia-Fucugauchi J, Marín L, Trejo-García A (1996) UNAM Scientific drilling program of Chicxulub impact structure—evidence for a 300 kilometre crater diameter. Geophys Res Lett 23(13):1565–1568CrossRefGoogle Scholar
  76. Urrutia-Fucugauchi J, Morán-Zenteno D, Sharpton V, Buffler R, Stöffler D, Smit J (2001) The Chicxulub Scientific Drilling Project Instituto de Geofísica, Universidad Nacional Autónoma de México, Serie: Infraestructura Científica y Desarrollo Tecnológico 3, 45 ppGoogle Scholar
  77. Utada M (2001) Zeolites in hydrothermally altered rocks. In: Bish DL, Ming DW (ed) Natural zeolites. Rev Mineral Geochem 45, Mineral Soc Am Washington, DC, 654 ppGoogle Scholar
  78. Ward W, Keller G, Stinnesbeck W, Adatte T (1995) Yucatan subsurface revisited: implications and constraints for the Chicxulub meteor impact. Geology 23:873–876CrossRefGoogle Scholar
  79. Welton EJ (l984) The AAPG methods in exploration series, 4, 237 ppGoogle Scholar
  80. Wittmann A, Kenkmann T, Schmitt RT, Stöffler D (2003) Clastic polymict dikes in the “megablock” sequence of the ICDP-Chicxulub drill core Yax-1. Geophys Res Abstr, vol 5, Nr 05223, Eur Geophys SocGoogle Scholar
  81. Worzel JL, Bryant W et al. (1973) Initial Reports of the Deep Sea Drilling Project, vol 10, Washington, DC, US Government Printing Office, 747 ppGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Wolfgang Stinnesbeck
    • 1
  • Gerta Keller
    • 2
  • Thierry Adatte
    • 3
  • Markus Harting
    • 4
  • Doris Stüben
    • 4
  • Georg Istrate
    • 4
  • Utz Kramar
    • 4
  1. 1.Geologisches InstitutUniversität KarlsruheKarlsruheGermany
  2. 2.Department of GeosciencesPrinceton UniversityPrincetonUSA
  3. 3.Geological InstituteUniversity of NeuchâtelNeuchâtelSwitzerland
  4. 4.Institut für Mineralogie und GeochemieUniversität KarlsruheKarlsruheGermany

Personalised recommendations