Advertisement

International Journal of Earth Sciences

, Volume 93, Issue 2, pp 297–313 | Cite as

Mesozoic evolution of the Tisza Mega-unit

  • János Haas
  • Csaba Péró
Original Paper

Abstract

The south-eastern part of the basement of the Pannonian Basin is made up of Variscan crystalline complexes and early Mesozoic formations showing striking affinity with the corresponding formations in the southern margin of the European Plate. This large composite structural unit, which is actually an exotic terrane of European Plate origin, has been named the Tisza Mega-unit. Based upon relevant data of the pre-Tertiary basement of southern Hungary the reconstruction of the position of the Tisza Terrane in the early Alpine evolutionary stages, the process of its separation and break-off from the European Plate, and results of its Eo-Alpine deformations are summarised in the present paper. In the Variscan and early Alpine evolutionary stages the area of the later Tisza Mega-unit was located at the margin of the European Plate. During Variscan orogeny terrane accretion led to intensive deformation and metamorphism in this belt. This was followed by transpressional tectonics and the development of molasse basins in the late and post-Variscan stages, and passive margin evolution after the Neotethys opening in the Middle Triassic. The separation of the Tisza Mega-unit began with incipient continental rifting along the axis of the later Ligurian–Penninic–Vahic oceanic branch in the Late Triassic. The end of terrigenous material deposition in the most external zones, and a coeval change in fossil assemblage, point to the separation of the Tisza Block from the European Plate in the Early Bathonian. Significant rotation of the Tisza Mega-unit and coeval paroxysm of alkaline rift-type basalt volcanism took place in the Early Cretaceous. In the mid-Cretaceous, due to the northward motion of the Adria Block and the related closure of the westernmost Neotethys basin, the extensional regime changed to a compressional one, leading to onset of the nappe stacking and low-grade regional metamorphism within the Tisza microplate. In the foreland of the nappe systems flexural basins came into existence that are characterised by flysch-type sedimentation. In the Early Tertiary the north-eastward motion of the Alcapa and Tisza + Dacia Blocks led to the formation of the present-day heterogeneous basement of the Pannonian Basin.

Keywords

Pannonian Basin Mesozoic Structural units Geodynamincs Palaeogeographic reconstruction 

Notes

Acknowledgement

This study was supported by the Hungarian Academy of Sciences and the Hungarian Scientific Research Fund (OTKA Project T037595) The authors thank Professor Stefan Schmid and Sándor Kovács for helpful discussions and comments. We are much obliged to Professor Wolfgang Frisch and Professor Peter Faupl for their careful and constructive reviews. Authors are indebted to Henry Lieberman (Houston, USA) for the lingual corrections.

References

  1. Antonescu Em (1973) Quelques données sur la palynologie du Lias sous faciès de Gresten de Roumanie. Poc III d’Intern Palyn Conf (Novosibirsk). Palynology of Mesophyte, Moscow, pp 53–57Google Scholar
  2. Árkai P (2001) Alpine regional metamorphism in the main tectonic units of Hungary: a review. Acta Geol Hung 44:329–344Google Scholar
  3. Árkai P, Bérczi-Makk A, Balogh Kad (2000) Alpine low-T prograde metamorphism in the post-Variscan basement of the Great Plain, Tisza Unit (Pannonian Basin, Hungary). Acta Geol Hung 43:43–64Google Scholar
  4. Árkai P, Bérczi-Makk A, Hajdu D (1998) Alpine prograde and retrograde metamorphism in an overthrusted part of the basement, Great Plain, Pannonian Basin, Eastern Hungary. Acta Geol Hung 41:179–210Google Scholar
  5. Balintoni I (1994) Structure of the Apuseni Mountains. Rom J Tect Reg Geol 75 Suppl no 2. ALCAPA II Field Guidebook, pp 51–58Google Scholar
  6. Balla Z (1982) Development of the Pannonian basin basement through the Cretaceous-Cenozoic collision: a new synthesis. Tectonophysics 88:61–102CrossRefGoogle Scholar
  7. Balla Z, Bodrogi I (1993) The ‘Vékény Marl Formation’ of Hungary. Cretaceous Res 14:431–448CrossRefGoogle Scholar
  8. Balogh K, Kőrössy L (1968) Tektonische Karte Ungarns im Maßstabe 1:1.000.000. Acta Geol Hung 12:255–262Google Scholar
  9. Balogh Kad, Árva-Sós E, Buda G (1983) Chronology of granitoid and metamorphic rocks of Transdanubia (Hungary). Annu Inst Geol Geofiz 61:359–364Google Scholar
  10. Bérczi-Makk A (1986) Mesozoic formation types of the Great Hungarian Plain. Acta Geol Hung 29:261–282Google Scholar
  11. Bérczi-Makk A (1998) The stratigraphy of the Triassic and Jurassic formations of the Great Hungarian Plain and the Tokaj Mountains. In: Bérczi I, Jámbor Á (eds) The stratigraphy of the geological formations of Hungary (in Hungarian). MOL Rt and MÁFI, Budapest, pp 281–298Google Scholar
  12. Bertrand M (1884) Rapports de structure des Alpes de Glaris et du Basin houiller du Nord. Bull Soc Géol Fr (3)12:318–330Google Scholar
  13. Bleahu M (1976) Structural position of the Apuseni Mountains in the Alpine system. Rev Roum Géol Géophys Géogr Sér Géol 20:7–19Google Scholar
  14. Bleahu M, Bordea S, Lupu M, Ştefan A, Patrulius D, Panin Şt (1981) The structure of the Apuseni Mountains. XII. Congr Carp Balk Geol Assoc Bucharest. Guide to excursion B3, pp 1–107Google Scholar
  15. Bleahu M, Mantea Gh, Bordea S, Panin Şt, Ştefănescu M, Šikić K, Haas J, Kovács S, Péró Cs, Bérczi-Makk A, Konrád Gy, Nagy E, Rálisch-Felgenhauer E, Török Á (1994) Triassic facies types, evolution and paleogeographic relations of the Tisza Megaunit. Acta Geol Hung 37:187–234Google Scholar
  16. Buda Gy (1985) The origin of the collision type Variscan granitoids (on the examples of the granitoids of Hungary, the Western Carpathians, and the Central Bohemian Massif) (in Hungarian). C Sc Thesis, BudapestGoogle Scholar
  17. Buda Gy (1995) Correlation of Middle European Variscan granitoids (in Hungarian). Habil Thesis, BudapestGoogle Scholar
  18. Buda Gy (1996) Correlation of Variscan granitoids occurring in Central Europe. Acta Min Petr Szeged 37(Suppl):1–24Google Scholar
  19. Channel JET, Horváth F (1976) The African/Adriatic promontory as a paleogeographical premise for Alpine orogeny and plate movements in the Carpatho-Balkan region. Tectonophysics 35:71–101CrossRefGoogle Scholar
  20. Csalagovits I, Juhász Á, Szepesházy K, Császár G, Radócz Gy (1967) Pre-Tertiary geological map of Hungary 1:500.000 (in Hungarian). MÁFIGoogle Scholar
  21. Császár G (1992) Urgonian facies of the Tisza Unit. Acta Geol Hung 35:263–285Google Scholar
  22. Császár G (1998) The stratigraphy of the Early and Mid-Cretaceous formations of Mecsek and Villány Unit. In: Bérczi I, Jámbor Á (eds) The stratigraphy of the geological formations of Hungary (in Hungarian). MOL Rt and MÁFI, Budapest, pp 353–369Google Scholar
  23. Császár G (2002) Urgon formations in Hungary. Geol Hung Ser Geol 25:1–209Google Scholar
  24. Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297:51–71CrossRefGoogle Scholar
  25. Csontos L, Nagymarosy A, Horváth F, Kováć M (1992) Tertiary evolution of the Intracarpathian area: a model. Tectonophysics 208:221–241CrossRefGoogle Scholar
  26. Dallmeyer RD, Neubauer F, Pană D, Fritz H (1994) Variscan vs. Alpine tectonothermal evolution within the Apuseni Mountains, Romania: evidence from 40Ar/39Ar mineral ages. Rom J Tect Reg Geol 75 Suppl no 2. ALCAPA II Field Guidebook, pp 65–76Google Scholar
  27. Dank V, Bodzay I (1971) Geohistorical background of the potential hydrocarbon reserves in Hungary. Acta Min Petr Szeged 20:57–70Google Scholar
  28. Dank V, Fülöp J, Ádám O, Barabás A, Bardócz B, Bérczi I, Brezsnyánszky K, Császár G, Haas J, Hámor G, Horváth F, Jámbor Á, Kassai M, Nagy E, Pogácsás Gy, Ráner G, Rumpler J, Síkhegyi F, Szederkényi T, Völgyi L, Zelenka T (1990) Structural geologic map of Hungary 1:500.000 (in Hungarian). MÁFI, BudapestGoogle Scholar
  29. Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Săndulescu M (eds) (2000) Atlas Peri-Tethys, Palaeogeographical maps. CCGM/CGMW, Paris. 24 maps and explanatory notes: I–XX; 1–269Google Scholar
  30. Dimitrescu R (1981) Hypothèses sur la structure du soubassement du secteur sud-oriental de la Dépression Pannonique. Rev Roum Géol Géophys Géogr Sér Géol 25:31–35Google Scholar
  31. Faupl P, Pober E, Wagreich M (1987) Facies development of the Gosau Group of the eastern parts of the Northern Calcareous Alps during the Cretaceous and Paleogene. In: Flügel HW, Faupl P (eds) Geodynamics of the Eastern Alps. Deuticke. Vienna, pp 142–155Google Scholar
  32. Faupl P, Wagreich M (1992) Cretaceous flysch and pelagic sequences of the Eastern Alps: correlations, heavy minerals, and palaeogeographic implications. Cretaceous Res 13:387–403Google Scholar
  33. Faupl P, Wagreich M (2000) Late Jurassic to Eocene palaeogeography and geodynamic evolution of the Eastern Alps. Mitt Österr Geol Ges 92:79–94Google Scholar
  34. Frisch W (1979) Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60:121–139CrossRefGoogle Scholar
  35. Frisch W, Ring U, Sören D, Borchert S, Biehler D (1994) The Arosa Zone and Platta Nappe ophiolites (Eastern Swiss Alps): geochemical characteristics and their meaning for evolution of the Penninic Ocean. Jahrb Beol B-A 137:19–23Google Scholar
  36. Fülöp J (1989) Introduction to the geology of Hungary (in Hungarian). Akadémiai Kiadó, Budapest, pp 1–248Google Scholar
  37. Fülöp J (1994) Geology of Hungary, Palaeozoic II (in Hungarian). Akadémiai Kiadó, Budapest, pp 1–447Google Scholar
  38. Fülöp J, Brezsnyánszky K, Haas J (1987) The new map of basin basement of Hungary. Acta Geol Hung 30:3–20Google Scholar
  39. Gawlick H-J, Frisch W, Vecsei A, Steiger T, Böhm F (1999) The change from rifting to thrusting in the Northern Calcareous Alps as recorded in Jurassic sediments. Geol Rundsch 87:644–657Google Scholar
  40. Gawlick H-J, Krystyn L, Lein R, Mandl GW (1999) Tectonostatigraphic concept for the Juvavic domain.- Tübinger Geowiss Arbeiten Reihe A. 52:95–99Google Scholar
  41. Géczy B (1972) The origin of the Jurassic faunal provinces and the Mediterranean plate tectonics (in Hungarian). MTA X. Oszt Közl, 5:297–311Google Scholar
  42. Géczy B (1973a) The origin of the Jurassic faunal provinces and the Mediterranean plate tectonics. Ann Univ Sci Budapest R Eötvös Nom Sect Geol 16:99–114Google Scholar
  43. Géczy B (1973b) Plate tectonics and paleogeography in the East-Mediterranean Mesozoic. Acta Geol Hung 17:421–428Google Scholar
  44. Géczy B (1984) Provincialism of Jurassic ammonites: examples from Hungarian faunas. Acta Geol Hung 27:379–389Google Scholar
  45. Giuşcă D, Cioflică G, Savu G (1966) Caracterizarea petrologică a provinciei banatitice. Anu Com Geol 35:13–40Google Scholar
  46. Golonka J, Krobicki M, Oszczypko N, Ślączka A, Słomka T (2003) Geodynamic evolution and palaeography of the Polish Carpathians and adjacent areas during Neo-Cimmerian and preceding events (latest Triassic-earliest cretaceous). In: McCann T, Saintot A (eds) Tracing tectonic deformation using the sedimentary record. Geol Soc Lond Spec Publ 208:138–158Google Scholar
  47. Gradstein F, Ogg J (1999) Geological timescale. Digital time scale, Purdue UniversityGoogle Scholar
  48. Grecula P, Varga I (1979) Main discontinuity belts on the inner side of the Western Carpathians. Miner Slov 11:389–403Google Scholar
  49. Grow JA, Mattick RE, Bérczi-Makk A, Péró Cs, Hajdu D, Pogácsás Gy, Várnai P, Varga E (1994) Structure of the Békés Basin inferred from seismic reflection, well and gravity data. In: Teleki PG et al. (eds) Basin analysis in petroleum exploration. Kluwer Academic Publishers, Dordrecht, pp 1–38Google Scholar
  50. Haas J (1998) The stratigraphy of the Late-Cretaceous formations of the Great Plain and North-Hungary. In: Bérczi I, Jámbor Á (eds) The stratigraphy of the geological formations of Hungary (in Hungarian). MOL Rt and MÁFI, Budapest, pp 379–388Google Scholar
  51. Haas J (2002) Origin and evolution of Late Triassic platform carbonates in the Transdanubian Range (Hungary) Geol Carp 53:159–178Google Scholar
  52. Haas J (ed) Árkai P, Balogh K, Császár G, Haas J, Hámor G, Kovács S, Márton E, Síkhegyi F, Szentgyörgyi K, Szederkényi T, Völgyi L (1996) Explanatory notes to the Pre-Tertiary basement map of Hungary and to the structural geological map of Hungary 1:500.000 (in Hungarian). MÁFI. Budapest, pp 1–186Google Scholar
  53. Haas J, Császár G, Kovács S, Vörös A (1990) Evolution of the western part of the Tethys as reflected by the geological formations of Hungary. Acta Geod Geoph Mont Hung 25:325–344Google Scholar
  54. Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian–Triassic facies zones in terrane reconstructions in the Alpine–North Pannonian domain. Tectonophysics 242:19–40CrossRefGoogle Scholar
  55. Harangi Sz (1994) Geochemistry and petrogenesis of the Early Cretaceous continental rift-type volcanic rocks of the Mecsek Mountains, South Hungary. Lithos 33:303–321CrossRefGoogle Scholar
  56. Harangi Sz, Szabó Cs, Józsa S, Szoldán Zs, Árva-Sós E, Balla M, Kubovics I (1996) Mesozoic igneous suites in Hungary: implications for genesis and tectonic setting in the northwestern part of Tethys. Int Geol Rev 36:336–360Google Scholar
  57. Harangi Sz, Tonarini S, Vaselli O, Manetti P (2003) Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geol Hung 46:77–94Google Scholar
  58. Horváth F, Rumpler J (1984) The Pannonian basement: extension and subsidence of an Alpine orogene. Acta Geol Hung 27:229–235Google Scholar
  59. Ianovici V, Borcoş M, Patrulius D, Lupu M, Dimitrescu R, Savu H (1976) The geology of the Apuseni Mountains (in Rumanian). (ed) Acad Republ Soc România. Bucureşti, pp 1–631Google Scholar
  60. Karamata S, Krstić B, Stefanović D (2003) Permian to Neogene accretion of the assemblage of the Pannonian Basin—development of the Vardar Composite Terrane and adjacent units. Acta Geol Hung 46:63–76Google Scholar
  61. Kázmér M, Dunkl I, Frisch W, Kuhlemann J, Ozsvárt P (2003) The Paleogene forearc basin of the Eastern Alps and Western Carpathians: subduction erosion and basin evolution. J Geol Soc Lond 160:413–428Google Scholar
  62. Kázmér M, Kovács S (1985) Permian–Paleogene paleogeography along the eastern part of the Insubric–Periadriatic Lineament system: evidence for continental escape of the Bakony–Drauzug Unit. Acta Geol Hung 28:71–84Google Scholar
  63. Kemenci R (1991) The magmatites and metamorphites in the regional, structural units of the Tertiary Basement in Vojvodina (Yugoslavia). Serb Acad Sci Arts, Nat Math Sci 62:227–242Google Scholar
  64. Kemenci R, Čanović M (1997) Geologic setting of the Pre-Tertiary basement in Vojvodina (Yugoslavia). Part I: The Tisza Mega-unit of North Vojvodina. Acta Geol Hung 40:1–36Google Scholar
  65. Kober L (1921) Der Bau der Erde. Borntraeger. Berlin, pp 1–203Google Scholar
  66. Kőrössy L (1963) Comparison between the geological structure of the basin regions of Hungary (in Hungarian). Földt Közl 93:153–172Google Scholar
  67. Kőrössy L (1982) Overlook of the geological structure of Hungary. Ált Földt Szemle 17:21–71 (in Hungarian)Google Scholar
  68. Kovách Á, Svingor É, Szederkényi T (1985) Rb-Sr dating of basement rocks from the southern foreland of the Mecsek Mountains, Southeastern Transdanubia, Hungary. Acta Min Petr Szeged 27:51–56Google Scholar
  69. Kovács S (1982) Problems of the “Pannonian Median Massif” and the distribution of Late Paleozoic–Early Mesozoic isopic zones. Geol Rundsch 71:617–648Google Scholar
  70. Kovács S (1984) Tisia problem and plate tectonics—critical analysis based on Early Mesozoic facies zones (in Hungarian). Földt Kut 27:55–72Google Scholar
  71. Kovács S, Császár G, Galácz A, Haas J, Nagy E, Vörös A (1989) The Tisza Superunit was originally part of the Northern (European) margin of the Tethys. In: Rakús M, Dercourt J, Nairn AEM (eds) Evolution of the Northern Margin of Tethys. II. Mém Soc Géol Fr Nouv Sér 154(2):81–100Google Scholar
  72. Kovács S, Haas J, Császár G, Szederkényi T, Buda Gy, Nagymarosy A (2000) Tectonostratigraphic terranes in the pre-Neogene basement of the Hungarian part of the Pannonian area. Acta Geol Hung 43:225–328Google Scholar
  73. Kovács S, Szederkényi T, Árkai P, Buda Gy, Lelkes-Felvári Gy, Nagymarosy A (1996–97) Explanation to the terrane map of Hungary. In: Papanikolaou D (ed) Ann Géol des Pays Hell 37:271–330Google Scholar
  74. Kozur H (1984) Some stratigraphical and paleogeographical data in the Paleozoic and Mesozoic of the Pannonian Median Massif and adjacent areas. Acta Geod Geoph Mont Hung 19:93–106Google Scholar
  75. Laubscher HP (1971) Das Alpen–Dinariden Problem und die Palinspastik der südlichen Tethys. Geol. Rundsch 60:813–833Google Scholar
  76. Laubscher HP (1983) The Late Alpine (Periadriatic) intrusions and the Insubric Line. Mem Soc Geol It 26:21–30Google Scholar
  77. Lelkes-Felvári Gy, Frank W, Schuster R (2001) Basement evolution of the Great Hungarian Plain: Variscan, Permo-Triassic and Alpine (Cretaceous) metamorphism. Földt Közl 132:125–127Google Scholar
  78. Lelkes-Felvári Gy, Frank W, Schuster R (2003) Geochronological constraints of the Variscan, Permian-Triassic and Eo-Alpine (Cretaceous) evolution of the Great Hungarian Plain Basement. Geol Carp 54:299–315Google Scholar
  79. Lóczy L Jun (1923) Sketch of the geologic structure of Hungary (in Hungarian). Földt Szemle 1:109–115Google Scholar
  80. Lóczy L Sen (1918) Geologic structure of Hungary. In: Lóczy L Sen (ed) A Magyar Szent Korona országainak földrajzi, társadalomtudományi közművelődési és közgazdasági leirása. Magyar Födrajzi Társaság (in Hungarian). Kilián Frigyes utóda Kiadó, Budapest, pp 5–43Google Scholar
  81. Lugeon M (1903) Les nappes de recouvrement de la Tatra et l’origine des Klippes des Carpathes. Bull Lab Géol Géogr Phys Min et Petrogr Univ Lausanne 4:1–51Google Scholar
  82. Macheľ M (1984) The West Carpathians. In: Macheľ M, Malkovsky M (eds) Explanations to tectonic map of Czechoslovakia, 1:500 000. Dionyz Štúr Inst, Bratislava, pp 30–50Google Scholar
  83. Mandl GW (2000) The Alpine sector of the Tethyan shelf—examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österr Geol Ges 92:61–77Google Scholar
  84. Marroni M, Molli G, Montanini A, Ottria G, Pandolfi L, Tribuzio R (2002) The External Ligurian Units (Northern Apennine, Italy): from rifting to convergence of fossil ocean-continent transition zone. Ofioliti 27:119–131Google Scholar
  85. Márton E (2000) The Tisza Megatectonic Unit in the light of paleomagnetic data. Acta Geol Hung 43:329–343Google Scholar
  86. Mišík M, Mock R, Rakús M, Biely A (1989) The area of Mesozoic sedimentation of the Mecsek and Northern Apuseni Mountains was not situated in the West Carpathians. In: Rakús M, Dercourt J, Nairn AEM (eds) Evolution of the Northern Margin of Tethys. Mém Soc Géol Fr, Paris, Nouv Sér 154(II):69–79Google Scholar
  87. Nagy E (1968) Triasbildungen des Mecsek Gebirges. Ann Inst Geol Hung 51:1–239Google Scholar
  88. Nagy E (1969) Paläogeographie. In: Unterlias-Kohlenserie des Mecsek Gebirges (Geologie). Ann Inst Geol Hung 51:289–317Google Scholar
  89. Nagymarosy A (1998) The stratigraphy and the palaeogeographical connections of the Szolnok flysch belt. In: Bérczi I, Jámbor Á (eds) Stratigraphy of the geological formations of Hungary (in Hungarian). MOL Rt and MÁFI, Budapest, pp 389–402Google Scholar
  90. Neubauer F, Raumer JF (1993) The Alpine Basement. Linkage between Variscides and East-Mediterranean Mountain Belts. In: Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp 641–664Google Scholar
  91. Pamić J (2003) The allochthonous fragments of the Internal Dinaridic units in the western part of the South Pannonian Basin. Acta Geol Hung 46:41–62Google Scholar
  92. Pap S (1990) Upthrusted sequences in the middle part of the territory East of the Tisza (in Hungarian). Spec Pap. Hung Geol Inst, pp 1–36Google Scholar
  93. Patrulius D (1976) Les formations mésozoiques des monts Apuseni septentrionaux: corrélation chronostratigraphique et faciale. Rev roum Géol Géophys Géogr Sér Géol 20:49–57Google Scholar
  94. Patrulius D, Bleahu M (1967) Le Trias des Monts Apuseni. Geol Sbornik 18:245–255Google Scholar
  95. Patrulius D, Bleahu M, Antonescu Em, Baltreş S, Bordea S, Bordea J, Gheorghian D, Iordan M, Mirăuţa E, Panin Şt, Popa E, Tomescu C (1979) The Triassic formations of the Bihor Autochton and Codru nappe-system (Apuseni Mountains). 3rd Triassic Coll Carp Balk Geol Assoc Guidebook to field trips. Bucharest, pp 1–21Google Scholar
  96. Patrulius D, Bleahu M, Popescu I, Bordea S (1971) The Triassic formations of the Apuseni Mountains and of East Carpathian Bend. Guidebook to excursions No 8. 2nd Triassic Coll Carp Balk Assoc, Bucharest, pp 1–86Google Scholar
  97. Patrulius D, Lupu M, Borcoş M (1968) Carte Géologique 9. Şimleul Silvaniei 1:200.000. Note explicative. Inst Géol, Bucharest, pp 1–48Google Scholar
  98. Peters K (1862) Über den Lias von Fünfkirchen. Sitzungsb k Akad Wiss Wien Mat-nat Kl 46:241–293Google Scholar
  99. Plašienka D (1998) Paleotectonic evolution of the Central Western Carpathians during the Jurassic and Cretaceous. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Surv Slov Rep D Štúr, Bratislava, pp 107–130Google Scholar
  100. Plašienka D (2000) Paleotectonic controls and tentative palinspastic restoration of the Carpathian realm during the Mesozoic. Slovak Geol Mag 6:200–204Google Scholar
  101. Prinz Gy (1926) Geography of Hungary. I. The origin, structure and form of the earth of Hungary (in Hungarian). Tud Gyűjt 15, Danubia, Pécs, pp 1–200Google Scholar
  102. Rakús M, Potfaj M, Vozárová A (1998) Basic paleogeographic and paleotectonic units of the Western Carpathians. In: Rakús M (ed) Geodynamic development of the Western Carpathians. Geol Surv Slov Rep D Štúr, Bratislava, pp 15–26Google Scholar
  103. Rozlozsnik P (1936–1937) Die tektonische Stellung der Bihargebirgsgruppe (Mţii Apuseni) im Karpatensystem. Mat Term tud Értesitő 55:46–74Google Scholar
  104. Rozlozsnik P (1939) Kristallin und Paläozoikum. In: Pálfy M, Rozlozsnik P: Geologie des Bihar- und Béler Gebirges. I. Geol Hung Ser Geol 7:1–200Google Scholar
  105. Spişiak J (2002) Mesozoic alkali basalts/lamprophyres from the Western Carpathians. Geol Carp 53 Spec Iss, pp 183–185Google Scholar
  106. Stampfli GM, Borel GD, Cavazza W, Mosar J, Ziegler PA (2001a) Palaeotectonic and palaeogeographic evolution of the western Tethys and PeriTethyan domain (IGCP Project 369). Episodes 24:222–227Google Scholar
  107. Stampfli GM, Borel GD, Cavazza W, Mosar J, Ziegler PA (2001b) Palaeotectonic Atlas of the PeriTethyan Domain (CD-ROM). European Geophysical SocietyGoogle Scholar
  108. Suess E (1875) Die Entstehung der Alpen. Wien Braumüller. pp 1–168Google Scholar
  109. Szalai T (1958) Geotectonische Synthese der Karpaten (in Hungarian). MÁELGI Geof Közl 6:111–145Google Scholar
  110. Szederkényi T (1984) The crystalline basement of the Great Hungarian Plain and its geologic connections (in Hungarian). D Sc Thesis, BudapestGoogle Scholar
  111. Szederkényi T (1996) Metamorphic formations and their correlation in the Hungarian part of the Tisza Megaunit (Tisza Composite Terrane). Acta Min Petr Szeged 37:143–160Google Scholar
  112. Szederkényi T, Árkai P, Lelkes-Felvári Gy (1991) Crystalline ground floor of the Great Hungarian Plain and South Transdanubia, Hungary. Serb Acad Sci Arts, Nat Math Sci 62:261–272Google Scholar
  113. Szentgyörgyi K (1983) Lithostratigraphic units of the Epicontinental Senonian in the Great Plain. Acta Geol Hung 26:197–211Google Scholar
  114. Szentgyörgyi K (1984) Stratigraphic and facial connections of the Upper Cretaceous formations in the Alföld (E-Hungary) (in Hungarian). Ált Földt Szemle 20:5–25Google Scholar
  115. Szepesházy K (1973) The Late Cretaceous and Paleogene formations of Northwest Trans-Tisza region (in Hungarian). Akadémiai Kiadó, Budapest, pp 1–95Google Scholar
  116. Szepesházy K (1975) Geological setting of the NE Carpathians and their position in the Carpathian system (in Hungarian). Ált Földt Szemle 8:25–59Google Scholar
  117. Szepesházy K (1980) Major tectonics of the Trans-Tisza Region as related to the Transylvanian Central Mountains (Munţii Apuseni) (in Hungarian). M Áll Földt Int Évi Jel 1978:173–186Google Scholar
  118. Tari V, Pamić J (1998) Geodynamic evolution of the northern Dinarides and South Pannonian Basin. Tectonophysics 297:269–281CrossRefGoogle Scholar
  119. Telegdi Roth K (1929) The geology of Hungary. I. Tud Gyűjt 104 (in Hungarian). Danubia, Pécs, pp 1–171Google Scholar
  120. Thöni M (1999) A review of geochronologoical data from the Eastern Alps. Schweiz Mineral Petrogr Mitt 79:209–230Google Scholar
  121. Török Á (1993) Storm influenced sedimentation in the Hungarian Muschelkalk. In: Hagdorn H, Seilacher A (eds) Muschelkalk. Schöntaler Symposium 1991. Jahrb Ges Nat Württemberg. Korb (Goldschneck). Stuttgart, 2:133–142Google Scholar
  122. Török Á (1998) Controls on development of Mid-Triassic ramps: examples from southern Hungary. In: Wright VP, Burchette TP (eds) Carbonate ramps. Geol Soc Lond Spec Publ 149:339–367Google Scholar
  123. Török Á (2000) Muschelkalk carbonates in southern Hungary: an overview and comparison to German Muschelkalk. Zentralbl Geol Paläont I. 1998:1085–1103Google Scholar
  124. Uhlig V (1907) Über die Tektonik der Karpathen. Sitzber k Akad Wiss Wien Math-natw Kl 116:871–892Google Scholar
  125. Vadász E (1954) Sketch of structural setting of Hungary (in Hungarian). MTA Műsz Oszt Közl 14:217–255Google Scholar
  126. Varga AR, Szakmány Gy, Máthé Z, Józsa S (2003) Petrology and geochemistry of Upper Carboniferous siliciclastic rocks (Téseny Sandstone Formation) from the Slavonian-Drava Unit (Tisza Megaunit, Hungary), summarized results. Acta Geol Hung 46:95–114Google Scholar
  127. Vörös A (1993) Jurassic microplate movements and Brachiopod migrations in the western part of the Tethys. Palaeogeogr Plaeoclimatol Palaeoecol 100:125–145CrossRefGoogle Scholar
  128. Vörös A (2001) Paleobiogeographical analysis: a tool for the reconstruction of Mesozoic Tethyan and Penninic basins. Acta Geol Hung 44:145–158Google Scholar
  129. Wein Gy (1968) Die Tektonik von Südosttransdanubien. Jahrb Geol B A 111:91–113Google Scholar
  130. Wein Gy (1969) Tectonic review of the Neogene-covered areas of Hungary. Acta Geol Hung 13:399–436Google Scholar
  131. Wein Gy (1978) Alpine-type tectogenesis of the Carpathian Basin (in Hungarian). Földt Int Évi Jel 1976:245–256Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Geological Research Group of the Hungarian Academy of SciencesEötvös Loránd UniversityBudapestHungary

Personalised recommendations