Advertisement

International Journal of Earth Sciences

, Volume 93, Issue 1, pp 92–106 | Cite as

Coalification history of the Stephanian Ciñera-Matallana pull-apart basin, NW Spain: Combining anisotropy of vitrinite reflectance and thermal modelling

  • Kai FringsEmail author
  • Rüdiger Lutz
  • Helga de Wall
  • Laurence N. Warr
Original Paper

Abstract

The Stephanian Ciñera-Matallana Basin of NW Spain comprises 1,500 m of alluvial to lacustrine coal-bearing sediments, which were deposited in a late Variscan transtensional/transpressional pull-apart setting. The relationship between coalification pattern and rock deformation was evaluated by measurements of the anisotropy of vitrinite reflectance (AVR). The AVR ellipsoids reveal both pre-tectonic elements related to the bedding fabric and syn-tectonic elements related to folding, producing biaxial ellipsoid shapes with the maximum reflectance parallel to fold axes. The mean coalification gradient for the Stephanian succession is about 0.62 %Rr/km. Calculations of the mean palaeo-geothermal gradient are presented on the basis of three different empirical equations. A palaeo-geothermal gradient of 85 °C/km is considered the most realistic, with an overburden of about 1,000 m. 1-D numerical modelling of the burial history results in two possible scenarios, the most preferable involving a palaeo-heat flow of 150 mW/m2 and an overburden of ca. 1,050 m. These results indicate that maximum coalification was related to a localised but high palaeo-heat flow/-geothermal gradient. The anisotropy of vitrinite reflectance highlights the interactive and transitional nature of sedimentary compaction and rock deformation on the maturation of organic material within strike-slip fault zones.

Keywords

Ciñera-Matallana Coalification Palaeo-geothermal gradient Palaeo-heat flow Anisotropy of vitrinite reflectance 

Notes

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG-grant WA 10/10 2–1 and 2–2) and forms part of the doctoral thesis of the principal author. S.A. Hullera Vasco-Leonesa (Spain) is thanked for the permission to visit the open pit at Santa Lucia and the underground mine of Tabliza. O. Wallerath (Heidelberg) is thanked for preparing and polishing the very difficult material. R. Littke (Aachen, Germany) is thanked for kindly allowing us to measure some samples at the Lehrstuhl für Geologie, Geochemie und Lagerstätten des Erdöls und der Kohle in Aachen. Detailed reviews of an earlier version of the manuscript by W. Kalkreuth (Porto Alegre, Brasil) and R. Littke improved the quality of the text and are gratefully acknowledged. W. Langenberg (Edmonton, Canada) is thanked for permission to use his AVR calculation program. The constructive reviews of R. Gayer and J. Hower are also gratefully acknowledged.

References

  1. Allen PA, Allen JR (1990) Basin analysis: principles and applications. Blackwell, Oxford, pp 1–451Google Scholar
  2. Alonso JL, Pulgar JA, García Ramos JC, Barba P (1995) Tertiary basins and alpine tectonics in the Cantabrian Mountains (NW Spain). In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain. Cambridge University Press, pp 214–227Google Scholar
  3. Amerom van HWJ, Dillewijn van J (1963) Note sur le bassin houllier de Ciñera-Matallana. Leidse Geol Mededelingen 29:303–312Google Scholar
  4. Barker CE, Goldstein RH (1990) Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 18:1003–1006CrossRefGoogle Scholar
  5. Barker CE, Pawlewicz MJ (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In: Buntebarth G, Stegena L (eds) Palaeogeothermics. Springer, Berlin Heidelberg New York, pp 79–93Google Scholar
  6. Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a maturity parameter: applications and limitations. ACS Symp Series 570:216–229Google Scholar
  7. Bieg G, Burger K (1992) Preliminary study of tonsteins of the Pastora Formation (Stephanian B) of the Ciñera-Matallana Coalfield, northwestern Spain. Int J Coal Geol 21:139–160CrossRefGoogle Scholar
  8. Büker C (2002) Paläotemperaturindikatoren und ihre geologische Interpretation. [Online]. Available from World Wide Web: http://www.rwth-aachen.de/lek/Ww/CBPalaeotemp.html [Cited 2002-10-18]
  9. Casagrande DJ (1987) Sulphur in peat and coal. In: Scott AC (ed) Coal and coal-bearing strata. Geol Soc Lond Spec Publ 32:87–106Google Scholar
  10. Comte P (1959) Recherches sur les terrains anciens de la Cordilliere Cantabrique. Memorias Inst Geol Min Espana 60:1–440Google Scholar
  11. Connolly CA (1989) Thermal history and diagenesis of the Wilrich Member shale, Spirit River Formation, northwest Alberta. Can Petrol Geol Bull 37:182–197Google Scholar
  12. Evers HJ (1967) Geology of the Leonides between the Bernesga and Porma rivers, Cantabrian Mountains, NW Spain. Leidse Geol Mededelingen 44:83–151Google Scholar
  13. Fernandez-Suarez J (1998) Granitoid magmatism in the autochthonous of the NW Iberian Variscan belt: an overview. In: Arias D, Martin-Izard A, Paniagua A (eds) Gold: exploration and mining in NW Spain. Intern. meeting, Oviedo, pp 12–19Google Scholar
  14. Fernandez-Suarez J, Dunning GR, Jenner GA, Gutierrez-Alonso G (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U-Pb geochronology of granitoids. J Geol Soc 157:565–576Google Scholar
  15. Flinn D (1962) On folding during three-dimensional progressive deformation. Quat J Geol Soc Lond 118:385–433Google Scholar
  16. Frings KH (2002) Paläotemperatur-Anomalien in spätvariskischen Kohlebecken am Beispiel des Ciñera-Matallana Beckens, Kantabrisches Gebirge, NW Spanien. Geol-Pal Inst Univ Heidelberg Germany, Gaea heidelbergensis 11:1–136Google Scholar
  17. Galan E, Aparicio A, Villegas HFJ (1978) El metamorfismo de muy bajo grado (anquimetamorfismo) de la cuenca carbonifera Ciñera-Matallana (Provincia de Leon). Estud Geol 34:505–510Google Scholar
  18. Garcia-Lopez S, Bastida F, Brime C, Aller J, Valin ML, Sanz-Lopez J, Mendez CA, Menendez-Alvarez JR (1999) Los episodios metamorficos de la Zona Cantabrica y su contexto estructural. Trab Geol 21:177–187Google Scholar
  19. Gibling MR, Langenberg W, Kalkreuth WD, Waldron JWF, Courtney R, Paul J, Grist AM (2002) Deformation of Upper Carboniferous coal measures in the Sydney Basin: evidence for late Alleghanian tectonism in Atlantic Canada. Can J Earth Sci 39:79–93CrossRefGoogle Scholar
  20. Hertle M, Littke R (2000) Coalification pattern and thermal modelling of the Permo-Carboniferous Saar Basin (SW Germany). Int J Coal Geol 42:273–296CrossRefGoogle Scholar
  21. Heward AP (1978) Alluvial fan and lacustrine sediments from the Stephanian A and B (La Magdalena, Cinera-Matallana and Sabero) coalfields, northern Spain. Sedimentology 25:451–488Google Scholar
  22. Heward AP, Reading HG (1980) Deposits associated with a Hercynian to late Hercynian continental strike-slip system, Cantabrian Mountains, Northern Spain. Spec Publ Assoc Sediment 4:105–125Google Scholar
  23. Hirsch PB (1954) X-ray scattering from coals. Proc R Soc Lond Ser A, Math Phys Sci 226, 1165:143–169Google Scholar
  24. Hower JC, Davis A (1981a) Application of vitrinite reflectance anisotropy in the evaluation of coal metamorphism. Geol Soc Am Bull 92/1:350–366Google Scholar
  25. Hower JC, Davis A (1981b) Vitrinite reflectance anisotropy as a tectonic fabric element. Geol 9:165–168Google Scholar
  26. Hower JC, Gayer RA (2002) Mechanisms of coal metamorphism: case studies from Paleozoic coalfields. Int J Coal Geol 50:215–245CrossRefGoogle Scholar
  27. Julivert M (1971) Decolement tectonics in the Hercynian Cordillera of NW Spain. Am J Sci 270/1:1–29Google Scholar
  28. Kalkreuth W, Langenberg W, McMechan M (1989) Regional coalification pattern of Lower Cretaceous coal-bearing strata, Rocky Mountain Foothills and foreland, Canada – implications for future exploration. Int J Coal Geol 13:261–302CrossRefGoogle Scholar
  29. Karweil J (1956) Die Metoamorphose der Kohlen vom Standpunkt der physikalischen Chemie. Z Dtsch Geol Ges 107:132–139Google Scholar
  30. Kelker D, Langenberg W (1997) Ellipsoid estimation in coal reflectance anisotropy. Math Geol 29/2:185–198Google Scholar
  31. Krumm S (1992) Illitkristallinität als Indikator schwacher Metamorphose – Methodische Untersuchungen, regionale Anwendungen und Vergleiche mit anderen Parametern. Erlanger Geol Abh 120:1–75Google Scholar
  32. Langenberg W, Kalkreuth W (1991a) Reflectance anisotropy and syn-deformational coalification of the Jewel seam in the Cadomin area, Alberta, Canada. Int J Coal Geol 19:303–317CrossRefGoogle Scholar
  33. Langenberg W, Kalkreuth W (1991b) Tectonic controls on regional coalification and vitrinite-reflectance anisotropy of Lower Cretaceous coals in the Alberta Foothills, Canada. Soc Géol France Bull 162/2:375–383Google Scholar
  34. Langenberg W, Kalkreuth W, Holmes K (1998) Components of syn- and post-deformational coalification in the Mountain Park area, west central Alberta. Petrol Geol Can Bull 46/4:564–575Google Scholar
  35. Levine JR, Davis A (1984) Optical anisotropy of coals as an indicator of tectonic deformation, Broad Top Coal Field, Pennsylvania. Geol Soc Am Bull 95:100–108Google Scholar
  36. Levine JR, Davis A (1989) The relationship of coal optical fabrics to Alleghanian tectonic deformation in the central Appalachian fold-and-thrust belt, Pennsylvania. Geol Soc Am Bull 101:1333–1347CrossRefGoogle Scholar
  37. Lopatin NV (1971) Temperature and geologic time as factors in coalification. Akad Nauk SSSR, Ser Geol Izvestiya 3 (Translation from Russian by N. Bostick). pp 95–106Google Scholar
  38. Lotze F (1945) Zur Gliederung der Iberischen Meseta. Geotekton Forschungshfte 6:78–92Google Scholar
  39. Marschik R (1992) Der Übergang von der Diagenese zur sehr niedriggradigen Metamorphose im externen Varistikum (Kantabrische Zone), NW Spanien. Unpubl Diploma Thesis, Univ Heidelberg Germany, pp 1–70Google Scholar
  40. Martinez-Garcia E (1990) Stephanian and Permian basins. In: Dallmeyer RD, Martinez-Garcia E (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin Heidelberg New York, pp 39–54Google Scholar
  41. Martinez-Garcia E, Wagner RH (1984) The post-Asturian marine basin of late Stephanian age in northwest Spain. In: Belt ES, MacQueen RW (eds) CR IX Congress International Stratigraphie Geologique Carbonifere, Washington DC, Champaign/Urbana 1979. Southern Illinois Univ Press, Carbondale, Edwardsville 3:508–516Google Scholar
  42. Mendez-Cecilia AF (1985) Estudio de la evolucion de los carbones de la cuenca Cinera-Matallana, Leon. Unpubl PhD Thesis, Univ Oviedo, Spain, pp 1–269Google Scholar
  43. Merriman RJ, Kemp SJ (1996) Clay minerals and sedimentary basin maturity. Min Soc Bull 111:7–8Google Scholar
  44. Mullis J, Wolf M, Ferreiro-Mählmann R (2001) Temperature determination through fluid inclusion microthermometry and vitrinite reflectance values in the Diagenetic- and Anchi-Zones. J Conf Abstr (EUG XI, Strassbourg) 6:230Google Scholar
  45. Nijman W, Savage JF (1989) Persistent basement wrenching as controlling mechanism of Variscan thin-skinned thrusting and sedimentation, Cantabrian Mountains, Spain. Tectonophysics 169:281–302CrossRefGoogle Scholar
  46. Nöth S, Karg H, Littke R (2001) Reconstruction of Late Palaeozoic heat flows and burial histories at the Rhenoherecynian-Subvariscan boundary, Germany. Int J Earth Sci 90:234–256CrossRefGoogle Scholar
  47. Nöth S, Thomson RO, Littke R (2002) A method for assessing statistical significance and uncertainties for calibration of 1-D thermal basin maturation models. AAPG Bull 86/3:417–431Google Scholar
  48. Oncken O (1982) Zur Rekonstruktion der Geosynklinalgeschichte mit Hilfe von Inkohlungskurven (am Beispiel Ebbeantiklinorium, Rheinisches Schiefergebirge). Geol Rundsch 71:579–602Google Scholar
  49. Rouzaud JN, Oberlin A (1983) Contribution of high-resolution transmission microscopy (TEM) to organic materials characterization and interpretation of their reflectance. In: Durand B (ed) Thermal phenomena in sedimentary basins. Editions Technip, Paris, pp 127–134Google Scholar
  50. Rouzaud JN, Oberlin A (1990) The characterization of coals and cokes by transmission electron microscopy. In: Charcosset H (ed) Advanced methodologies in coal characterization. Elsevier, Amsterdam, Coal Sci Techn 15:311–355Google Scholar
  51. Sachsenhofer RF (2001) Syn- and post-collisional heat flow in the Cenozoic Eastern Alps. Int J Earth Sci 90:579–592Google Scholar
  52. Sachsenhofer RF, Littke R (1992) Vergleich und Bewertung verschiedener Methoden zur Berechnung der Vitrinitreflexion am Beispiel von Bohrungen im Steirischen Tertiärbecken. Zbl Geol Pal 6:597–610Google Scholar
  53. Salih MR, Lisle RJ (1988) Optical fabrics and their relation to tectonic deformation at Ffos Las, South Wales Coalfield. Ann Tectonicae 2:98–106Google Scholar
  54. Scheidt G, Littke R (1989) Comparative organic petrology of interlayered sandstones, siltstones, mudstones and coals in the Upper Carboniferous Ruhr basin, northwest Germany, and their thermal history and methane generation. Geol Rundsch 78/1:375–390Google Scholar
  55. Sitter de LU (1962) The structure of the southern slope of the Cantabrian Mountains. Explanation of a geological map with sections (scale 1:100.000). Leidse Geol Mededelingen 26:255–264Google Scholar
  56. Sitter de LU (1965) Hercynian and Alpine orogenies in northern Spain. Geol Mijnbouw 44:373–383Google Scholar
  57. Stone IJ, Cook AC (1979) The influence of some tectonic structures upon vitrinite reflectance. J Geol 87:497–508Google Scholar
  58. Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570Google Scholar
  59. Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic petrology. Gebrüder Borntraeger, Berlin, pp 1–704Google Scholar
  60. Teichmüller M (1987a) Recent advances in coalification studies and their application to geology. In: Scott AC (ed) Coal and coal-bearing strata: recent Advances. Geol Soc Spec Publ 32:127–169Google Scholar
  61. Teichmüller M (1987b) Organic material and very low-grade metamorphism. In: Frey M (ed) Low-temperature metamorphism. Blackie & Son, Glasgow, pp 114–161Google Scholar
  62. Teichmüller M, Teichmüller R (1966) Geological causes of coalification. Coal Sci Adv Chem Ser 55:133–155Google Scholar
  63. Ting FTC (1981) Uniaxial and biaxial vitrinite reflectance models and their relationship to palaeotectonics. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 379–392Google Scholar
  64. Villegas FJ (1996) Exploracion e investigacion de un nuevo yacimiento de carbon en la cuenca minera Cinera-Matallana (Leon). Unpubl PhD Thesis, Univ Complutense, Madrid, Spain, pp 1–417Google Scholar
  65. Wagner RH (1971) The stratigraphy and structure of the Cinera-Matallana coalfield (Prov. Leon, N.W. Spain). Trab Geol 4:385–429Google Scholar
  66. Wagner RH, Artieda JI (1970) La cuenca minera Cinera-Matallana. Internal report S.A. Hullera Vasco Leonesa, pp 1–289Google Scholar
  67. Waples DW (1980) Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bull 64:916–926Google Scholar
  68. Welte DH, Horsfield B, Baker DR (1997) Petroleum and basin evolution. Springer, Berlin Heidelberg New York, pp 1–535Google Scholar
  69. Welte DH, Yalcin MN (1988) Basin modelling – a new comprehensive method in petroleum geology. Org Geochem 13/1–3:141–151Google Scholar
  70. Yalcin MN, Littke R, Sachsenhofer RF (1997) Thermal history of sedimentary basins. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Berlin Heidelberg New York, pp 71–168Google Scholar
  71. Yamaji A (1986) Analysis of vitrinite reflectance-burial depth relations in dynamical geological settings by direct integration method. J Jpn Assoc Petrol Technol 51/3:1–8Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Kai Frings
    • 1
    Email author
  • Rüdiger Lutz
    • 2
  • Helga de Wall
    • 3
  • Laurence N. Warr
    • 1
  1. 1.Geologisch-Paläontologisches InstitutRuprecht-Karls-UniversitätHeidelbergGermany
  2. 2.Bundesanstalt für Geowissenschaften und Rohstoffe BGRStilleweg 2HannoverGermany
  3. 3.Institut für GeologieBayerische Julius-Maximilians UniversitätWürzburgGermany

Personalised recommendations