International Journal of Earth Sciences

, Volume 92, Issue 5, pp 743–757 | Cite as

Calcareous nannofossils from late Jurassic sediments of the Volga Basin (Russian Platform): evidence for productivity-controlled black shale deposition

Original Paper

Abstract

The Jurassic/Cretaceous boundary interval in the northern hemisphere is characterized by the widespread occurrence of black shales. About 60% of all petroleum source rocks comprise sediments of late Jurassic and early Cretaceous age with the origin of such black shales still under discussion. In order to better understand the factors that controlled black shale sedimentation, 78 samples were analyzed for calcareous nannofossils from two sections (Gorodische, Kashpir) of the Volga Basin (NE Russia). Calcareous nannofossils are ideal proxies for deciphering nutrient, temperature and salinity fluctuations. Additionally 58 samples from both sections were also analyzed for clay mineralogy, δ13Corg , TOC and CaCO3 composition. Both sections contain calcareous claystones and intercalated organic rich shales overlain by phosphorite beds. The presence of the calcareous nannofossil species Stephanolithion atmetros throughout both successions allows a biostratigraphic assignment to the S. atmetros Nannofossil Biozone (NJ 17), which corresponds to the Dorsoplanites panderi Ammonite Biozone of the Middle Volgian. The marlstones of the Kashpir section yield a well-preserved rich and diverse nannoflora, whereas all black shale beds are essentially barren of calcareous nannofossils. Only the uppermost black shale layers yield an impoverished assemblage of low diversity and abundance. Geochemical data suggest an early diagenetic nannofossil dissolution in the black shales of the Kashpir section. This is supported by the occurrence of coccoliths in black shale horizons of the Gorodische section. The assemblages in both sections are dominated by coccoliths of the Watznaueriaceae group (Watznaueria barnesae, Watznaueria fossacincta, Watznaueria britannica, Watznaueria communis), Biscutum constans and Zeugrhabdotus erectus. In Kashpir rare specimens of Crucibiscutum salebrosum occur in the higher part of the section. These taxa indicate boreal affinities. B. constans and Z. erectus are considered to be taxa indicative of a higher productive environment, while C. salebrosum is a cool-water species. From base to top of the Kashpir section, consecutive mass occurrences of different taxa/groups were observed: W. barnesae–W. fossacincta acme, W. britannica–W. communis acme, Z. erectus acme, B. constans acme (including sparse occurrences of C. salebrosum).

The observed distribution patterns have been interpreted as characterizing a transition from a low productive, oligotrophic setting with high abundances of K-selected cosmopolitan species (Watznaueriaceae) and predominating marlstone sedimentation to a higher productive, mesotrophic setting. Cooler water temperatures marked by r-selection and acmes of opportunistic species (Z. erectus, B. constans) are coincident with the deposition of black shales and phosphorites in the higher part of the section. Interpretation of clay mineral distribution indicates that black shale deposition occurred under semi-arid hinterland climatic conditions concomitant with a sea level rise. This induced dysoxic conditions in the deeper parts of the Volga Basin, favoring the preservation of organic matter. The cause of the nutrient enrichment in the surface water is still unclear, but possible river water input from the continents does not seem to have been the controlling factor under a semi-arid climate. The occurrence of phosphorites in the upper part of both sections presumably indicates that enhanced productivity may be better explained by the upwelling of nutrient-rich bottom water and thereby causing the recycling of nutrients from oxidized phytoplankton back into the photic zone. This recycling effect finally may have led to an intensified phytoplankton growth which seemed to be a sufficient source for the enrichment of organic matter. This is well correlated with the increase in black shale horizons in the upper part of the Kashpir section.

Keywords

Calcareous nannofossils Late Jurassic Black shales Volga Basin Paleoproductivity 

Notes

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Mu 667/19-1) is gratefully acknowledged. Stable isotopes were kindly measured by Dr. B. Donner (Institut für Geowissenschaften, University of Bremen). Alastair Ruffell was supported by a Royal Society travel grant. We are indebted to Evgenij Baraboshkin, Richard Marcinowski and Gregory Price for their help with fieldwork.

References

  1. Baraboshkin EJ (1999) Berriasian–Valanginian (Early Cretaceous) seaways of the Russian Platform Basin and the problem of Boreal/Tethyan correlation. Geol Carpathica 50(1):5–20.Google Scholar
  2. Bersezio R, Erba E, Gorza M, Riva A (2002) Berriasian–Aptian black shales of the Maiolica formation (Lombardian Basin, Southern Alps, northern Italy): local to global events. Palaeogeogr Palaeoclimatogr Palaeoecol 180:253–275CrossRefGoogle Scholar
  3. Bischoff G, Mutterlose J (1998) Calcareous nannofossils of the Barremian/Aptian boundary interval in NW Europe: biostratigraphic and palaeoecologic implications of a high resolution study. Cretaceous Res 19:635–661.CrossRefGoogle Scholar
  4. Bown P (1998) Calcareous nannofossil biostratigraphy. Chapman and Hall, Cambridge, 314 ppGoogle Scholar
  5. Brand LE (1994) Physiological ecology of marine coccolithophores. In: Winter A, Siesser WG (eds) Coccolithophores, Cambridge University Press, Cambridge, pp 39–50Google Scholar
  6. Chamley H, Bebrabant P, Chandillier AM, Foulon J (1983) Clay mineralogy and inorganic geochemical stratigraphy of Blake–Bahama Basin since the Callovian, Site 534, Deep Sea Drilling Project Leg. 76. Initial Reports of the Deep Sea Drilling Project 76, US Government Printing Office, Washington, DC, pp 437–451Google Scholar
  7. Coccioni R, Erba E, and Premoli-Silva I (1992) Barremian–Aptian calcareous plankton biostratigraphy from the Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution. Cretaceous Res 13:517–537Google Scholar
  8. Cooper MKE (1987) New calcareous nannofossil taxa from the Volgian Stage (Upper Jurassic) lectostratotype site at Gorodishche, U.S.S.R. Neues Jahrb Geol Paläontol Monatsh 10:606–612Google Scholar
  9. Curtis CD (1980) Diagenetic alteration in black shales. J Geol Soc Lond 137:189–194Google Scholar
  10. Daoudi L, Deconinck JF (1994) Contrôles paléogéographique et diagénétique des successions sédimentaires argileuses du Bassin Atlasique au Crétacé (Haut-Atlas Occidental, Maroc.). J Afri Earth Sci 18:123–141CrossRefGoogle Scholar
  11. Deconinck JF, Chamley H(1983) Héritage et diagenése des minéraux argileux dans les alternaces marno-calcaires du Crétacé inférieur du domaine subalpin. CR Acad Sci 297:589–594Google Scholar
  12. Deconinck JF, Beaudoin B, Chamley B, Joseph P, Raoult JF (1985) Contôles tectonique, eustatique et climatique de la sédimentation argileuse du domaine subalpin francais au Malm-Crétacé. Rev Géol Dynam Geogr Phys 26:311–320Google Scholar
  13. DoddJR, Stanton RJ (1990) Paleoecology—concepts and applications. Wiley, New York, 502 ppGoogle Scholar
  14. Erba E (1987) Mid-Cretaceous cyclic pelagic facies from the Umbrian–Marchean Basin: What do calcareous nannofossils suggest? INA Newsl 9:52–53Google Scholar
  15. Erba E (1989) Upper Jurassic to Lower Cretaceous Nannoconus distribution in some sections from northern to central Italy. Mem Sci Geol 41:255–261Google Scholar
  16. Erba E (1992) Middle Cretaceous calcareous nannofossils from the western Pacific (Leg 129): evidence for paleoequatorial crossings. In: Larson RL, Lancelot Y, and 21 other editors (ed) Proceedings of the Ocean Drilling Program, scientific results 129, pp 189–201Google Scholar
  17. Erba E, Castradori D, Guasti G, Ripepe M (1992) Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England). Palaeogeogr Palaeoclimatogr Palaeoecol 93:47–69CrossRefGoogle Scholar
  18. Eshet Y, Almogi-Labin A (1996) Calcareous nannofossils as palaeoproductivity indicators in Upper Cretaceous organic-rich sequences in Israel. Mar Micropalaeontol 26:37–61CrossRefGoogle Scholar
  19. Fisher, C. (1999) Calcareous nannofossils as indicators of mid-Cretaceous paleofertility along an ocean front, U.S. western interior. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous ocean–climate system. Geol Soc Am, Madison, Wisconsin, Special Paper 332, pp 161–180Google Scholar
  20. Gardner WD, Hinga KR, Marra J.(1983) Observations on the degradation of biogenic material in the deep ocean with implications on accuracy of sediment trap fluxes. J Mar Res 38(1):17–39Google Scholar
  21. Gerasimov PA, Mikhailov NP (1966) Volgian stage and the geostratigraphical scale for the upper series of the Jurassic system. Izvest Akad Nauk SSSR, Seriya Geol 2:118–138Google Scholar
  22. Groecke DR (2002) The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Philos Trans R Soc Lond B A 360:633–658CrossRefGoogle Scholar
  23. Groecke D, Price GD, Ruffell A, Mutterlose J (2003) Jurassic–Cretaceous palaeotemperatures compared from the Volga Basin (Russian Platform) and Kilhaua Harbour (New Zealand). Palaeoecol Palaeogeogr Palaeoclimatol (in press)Google Scholar
  24. Hallam A, Grose JA, Ruffell AH (1991) Palaeoclimatic significance of changes in clay mineralogy across the Jurassic–Cretaceous boundary in England and France. Palaeogeogr Palaeoclimatogr Palaeoecol 81:173–187CrossRefGoogle Scholar
  25. Hantzpergue P, Baudin F, Mitta V, Olferiev A, Zakharov V (1998a) The Upper Jurassic of the Volga basin: ammonite biostratigraphy and correlations with standard European zonations. C RAcad Sci 326:633–640.CrossRefGoogle Scholar
  26. Hantzpergue P, Baudin F, Mitta V, Olferiev A, Zakharov V (1998b) The Upper Jurassic of the Volga basin: ammonite biostratigraphy and occurence of organic-carbon rich facies. Correlations between boreal–sobboreal and submediterranean provinces. In: Crasquin-Soleau S, Barrier E (Eds) Peri-Tethys Memoir 4: epicratonic basins of Peri-Tethyan platforms. Mémoires Du Muséum National D´Historique Naturelle, Paris. pp 9–33Google Scholar
  27. Hasegawa T, Pratt LM, Maeda H, Shigeta Y, Okamoto T, Kase T, Uemura K (2003) Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeogr Palaeoclimatol Palaeoecol 189:97–115CrossRefGoogle Scholar
  28. Hofman P, Ricken W, Schwark L, Leythaeuser D (2000) Carbon–sulfur–iron relationships and δ13C of organic matter for late Albian sedimentary rocks from the north Atlantic Ocean: paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 163:97–113CrossRefGoogle Scholar
  29. Kennedy MJ (2002) Mineral surface control of organic carbon in black shale. Nature 295:657–660CrossRefGoogle Scholar
  30. Keupp H, Mutterlose J (1994) Calcareous phytoplankton from the Barremian/Aptian boundary interval from NW Germany. Cretaceous Res 15:739–763CrossRefGoogle Scholar
  31. Kuleva GV, Yanochskina ZA, Bukina TF (1996) Palaeoecosystem of Dorsoplanites panderi phase in the Volga shale-generating basin. Stratigr Geol Correlation 4:238–245Google Scholar
  32. Lees JA (2003) Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean. Cretaceous Res 23:537–634CrossRefGoogle Scholar
  33. McIntyre A (1967) Coccoliths as Paleoclimatic indicators of Pleistocene Glaciation. Science 158(3806):1314–1317Google Scholar
  34. McIntyre A, Allan WH, Roche MB (1970) Modern pacific coccolithophorida: a paleontological thermometer Trans N Y Acad Sci 32(6):720–731Google Scholar
  35. Melinte M, Mutterlose . (2001) A Valanginian (Early Cretaceous),Boreal nannoplankton excursion in sections from Romania. Mar Micropalaeontol 43:1–25CrossRefGoogle Scholar
  36. Mesezhnikov MS (eds) (1977) Jurassic/Cretaceous boundary beds in the Middle Volga area. Ministry of Geology of the USSR. VNIGRI, pp 1–33Google Scholar
  37. Mutterlose J (1991) Das Verteilungs- und Migrationsmuster des kalkigen Nannoplanktons in der borealen Unter-Kreide (Valangin-Apt) NW-Deutschlands. Palaeontographica B221:27–152Google Scholar
  38. Mutterlose J (1996) Calcareous nannofossil palaeoceanography of the Early Cretaceous of NW Europe. MittGeol Staatsinst Hamburg 77:291–313Google Scholar
  39. Mutterlose J and Kessels K (2000) Early Cretaceous calcareous nannofossils from high latitudes: implications for palaeobiogeography and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 160:347–372CrossRefGoogle Scholar
  40. Nadeau PH, Wilson MJ, Mchardy WJ, Tait JM (1985) The conversion of smectite to illite during diagenesis: evidence from some illitic clay from bentonites and sandstones Mineral Mag 49:393–400Google Scholar
  41. Nalivkin DV (1973) Geology of the USSR. University of Toronto Press, Toronto 855 ppGoogle Scholar
  42. Newman JW, Parker PL, Behrens EW (1973) Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico. Geochim Cosmochim Acta 37:225–238Google Scholar
  43. Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res 20:619–641Google Scholar
  44. Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge pp 329–426Google Scholar
  45. Pittet B, Mattioli E (2002) The carbonate signal and calcareous nannofossil distribution in an upper Jurassic section (Balingen-Tieringen, Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 179:71–96CrossRefGoogle Scholar
  46. Premoli-Silva I, Erba E, Tornaghi ME (1989) Paleoenvironmental signals and changes in surface fertility in mid Cetaceous Corg.rich pelagic facies of the Fucoid Marls (central Italy). Géobois Mem Spéc 11:225–236Google Scholar
  47. Riboulleau A, Derenne S, Sarret G, Largeau C, Baudin F, Connan J (2000) Pyrolytic and spectroscopic study of a sulphur rich kerogen from the "Kashpir oil shales" (Upper Jurassic, Russian platform). Organic Geochem 0(2000):1–21Google Scholar
  48. Riboulleau A, Baudin F, Daux V, Hantzpergue P, Renard M, Zakharov V (1998) Évolution de la paléotempérature des eaux de la plate-forme russe au cours du Jurassique supérieur. C Rs Acad Sci 326:239–246CrossRefGoogle Scholar
  49. Roth PH (1986) Mesozoic palaeoceanography of the North Atlantic and the Tethys Oceans. In: Summerhayes CP, Shackelton NJ (eds) SEPM Special Publication 32, pp 517–546Google Scholar
  50. Roth PH (1989) Ocean circulation and calcareous nannofossil evolution during the Jurassic and Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 74:111–126CrossRefGoogle Scholar
  51. Roth PH, Bowdler JL (1981) Middle Cretaceous calcareous nannoplankton biogeography and paleoceanography of the Atlantic ocean. SEPM Special Publication 32, pp 517–546Google Scholar
  52. Roth PH, Krumbach KR (1986) Middle Cretaceous calcareous nannofossil biogeography and preservation in the Atlantic and Indian Oceans: implications for paleoceanography. Mar Micropalaeontol 10:235–266CrossRefGoogle Scholar
  53. Ruehlemann C, Frank M, Hale W, Mangini A, Mulitza S, Müller PJ, Wefer G (1996) Late Quaternary productivity changes in the western equatorial Atlantic: evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Mar Geol 135:127–152CrossRefGoogle Scholar
  54. Ruffell AH, Batten DJ (1990) The Barremian-Aptian arid phase in northern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 80:197–212CrossRefGoogle Scholar
  55. Ruffell A, McKinley JM, Worden RH (2002a) Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philos Trans R Soc Lond A 360:675–693CrossRefGoogle Scholar
  56. Ruffell AH, Price GD, MutterloseJ, Kessels K, Baraboshkin E, Grocke DR (2002b) Palaeoclimate indicators (clay minerals, calcareous nannofossils, stable isotopes) compared from two successions in the late Jurassic of the Volga Basin (SE Russia). Geol J 37:1–17CrossRefGoogle Scholar
  57. Sasonova, I.G. (1977) Die Ammoniten der Jura/Kreide-Grenzschichten der Russischen Plattform. Trudy VNIGRI 185:127 ppGoogle Scholar
  58. Sasonov, NT, Sasonova IG (eds) (1967) Palaeogeography of the Russian Platform in the Jurassic and Early Cretaceous. Nedra, 227 ppGoogle Scholar
  59. Sellwood, BW, Price GD (1993) Sedimentary facies as indicators of Mesozoic palaeoclimate. Philos Trans R Soc Lond B341:225–233Google Scholar
  60. Shmur SI, Emets TP, Bartoshevich OV, Kornilina VE, Ermakova VI (1983) Shale bearing layers of the Volga basin. Lithol Mineral Resour 18:337–345Google Scholar
  61. Singer A (1984) The paleoclimatic interpretation of clay minerals in sediments. A review. Earth Sci Rev 21:251–293.CrossRefGoogle Scholar
  62. Street C Bown PR (2000) Palaeobiogeography of Early Cretaceous (Berriasian-Barremian) calcareous nannoplankton. Mar Micropaleontol 39:265–291CrossRefGoogle Scholar
  63. Thomsen E (1989) Seasonal variation in boreal Early Cretaceous calcareous nannofossils. Mar Micropalaeontol 15:123–152CrossRefGoogle Scholar
  64. Tucker M (1988) Techniques in Sedimentology, Blackwell, London, 394 ppGoogle Scholar
  65. Van Kaam-Peter HME, Schouten S, Köster J, Sinnighe Damste JS (1998) Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulphurisation. Geochim Cosmochim Acta 62: 3259–3283.CrossRefGoogle Scholar
  66. Watkins DK (1989) Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeogr Palaeoclimatol Palaeoecol 74:75–86CrossRefGoogle Scholar
  67. Wignall PB (1994) Black Shales. Clarendon Press, Oxford, 136 ppGoogle Scholar
  68. Wignall PB, Ruffell AH (1990) The influence of a sudden climatic-change on marine deposition in the Kimmeridgian of northwest Europe. J Geol Soc Lond 147:365–371Google Scholar
  69. Williams JR, Bralower TJ (1995) Nannofossil assemblages, fine fraction stable isotopes, and the paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography 10(4):815–839Google Scholar
  70. Young JR, Bown PR (1991) An ontogenetic sequence of coccoliths from the Late Jurassic Kimmeridge Clay of England. Palaeontology 34:843–850Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Kai Kessels
    • 1
  • Jörg Mutterlose
    • 1
  • Alastair Ruffell
    • 2
  1. 1.Institut für Geologie, Mineralogie und GeophysikRuhr-Universität BochumBochumGermany
  2. 2.School of GeographyThe Queen's UniversityBelfastUK

Personalised recommendations