Advertisement

Efficient lossless compression for depth information in traffic scenarios

  • Qing RaoEmail author
  • Samarjit Chakraborty
Regular Paper
  • 9 Downloads

Abstract

Modern day automotive features (e.g., in-vehicle augmented reality) require a depth of the environment as the input source. It is important that depth data can be transferred from one processing unit to another in a car. About 10 years ago, Stixel has been introduced as a mid-level representation of depth maps (disparities) which reduces the data volume thereof significantly. Since then, Stixel has been extensively researched and is nowadays a seriously considered solution for series production cars. Nevertheless, even after using a Stixel representation, the depth data can hardly fit into a low- or medium-bandwidth in-vehicle communication system, e.g., via a CAN bus. Hence, the cost-sensitive automotive industry is still seeking new solutions for the transmission of depth information using in-vehicle communication buses. In this paper, we present an efficient lossless compression scheme for Stixels as a potential solution to this problem. Our proposed algorithm removes both spatial and temporal redundancies in Stixels through a combination of predictive modeling and entropy coding. Evaluation shows that it outperforms general purpose compression schemes, e.g., zlib, by more than \(60\%\) in space savings. More importantly, we prove that using the proposed Stixel compression, depth information could be transmitted through a less expensive CAN bus, whereas a much more expensive FlexRay bus is needed otherwise. We believe that this finding has great relevance for the automotive industry.

Keywords

Stixel Lossless compression In-vehicle communication system 

Notes

References

  1. 1.
    Alakuijala, J., Szabadka, Z.: Brotli compressed data format. https://tools.ietf.org/html/rfc7932 (2016). Accessed 5 Feb 2019
  2. 2.
    Badino, H., Franke, U., Pfeiffer, D.: The Stixel world—a compact medium level representation of the 3d world. In: Proceedings of the 31st Deutsche Arbeitsgemeinschaft für Mustererkennung (DAGM) Symposium [German Conference on Pattern Recognition (GCPR)], pp 51–60. Jena, Germany (2009)Google Scholar
  3. 3.
    Cordts, M., Rehfeld, T., Schneider, L., Pfeiffer, D., Enzweiler, M., Roth, S., Pollefeys, M., Franke, U.: The Stixel world: a medium-level representation of traffic scenes. Image Vis. Comput. 68, 40–52 (2017)CrossRefGoogle Scholar
  4. 4.
    Ding, J., Du, X., Wang, X., Liu, J.: Improved real-time correlation-based FPGA stereo vision system. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 104–108. Xi'an, China (2010)Google Scholar
  5. 5.
    Engel, D., Stütz, T., Uhl, A.: A Survey on JPEG2000 Encryption. Multimedia Syst. 15(4), 243–270 (2009)CrossRefGoogle Scholar
  6. 6.
    Gailly, J.L., Adler, M.: zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library. https://www.zlib.net (1995). Accessed 5 Feb 2019
  7. 7.
    Gallager, R., van Voorhis, D.: Optimal source codes for geometrically distributed integer alphabets. IEEE Trans. Inform. Theory 21(2), 228–230 (1975)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gautier, J., Le Meur, O., Guillemot, C.: Efficient depth map compression based on lossless edge coding and diffusion. In: Picture Coding Symposium (PCS), pp. 81–84. Kraków, Poland (2012)Google Scholar
  9. 9.
    Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo engine using semi-global matching. In: International Conference on Computer Vision Systems (ICVS), pp. 134–143. Liège, Belgium (2009)Google Scholar
  10. 10.
    Golomb, S.: Run-length encodings. IEEE Trans. Inform. Theory 12(3), 399–401 (1966)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hirschmüller, H.: Improvements in Real-time correlation-based stereo vision. In: IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV), pp. 141–148. Kauai, Hawaii, USA (2001)Google Scholar
  12. 12.
    Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 2, 807–814. San Diego, Carlifornia, USA (2005)Google Scholar
  13. 13.
    Hirschmüller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced Border errors. Int. J. Comput. Vis. 47(1), 229–246 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Howard, P.G., Vitter, J.S.: Fast and efficient lossless image compression. In: Data Compression Conference (DCC), pp. 351–360. Snowbird, Utah, USA (1993)Google Scholar
  15. 15.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)CrossRefzbMATHGoogle Scholar
  16. 16.
    International Organization for Standardization: ISO 11898-1: road vehicles—controller area network (CAN)—Part 1: Data link layer and physical signaling (2003)Google Scholar
  17. 17.
    International Organization for Standardization: ISO/IEC 15948: InformationTechnology—Computer Graphics and Image Processing—Portable NetworkGraphics (PNG): Functional Specification (2004)Google Scholar
  18. 18.
    International Organization for Standardization: ISO/IEC 21320-1: Information technology—document container file—Part 1: Core (2015)Google Scholar
  19. 19.
    Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: International Conference on 3D Vision (3DV), pp. 239–248. Stanford, Carlifornia, USA (2016)Google Scholar
  20. 20.
    Liu, Z., Qian, Y., Yang, L., Bo, Y., Li, H.: An improved lossless image compression algorithm LOCO-R. International Conference on Computer Design and Applications (ICCDA) 1, 328–331. Qinhuangdao, China (2010)Google Scholar
  21. 21.
    Mahoney, M.: Incremental journaling backup utility and archiver. http://mattmahoney.net/dc/zpaq.html (2009). Accessed 5 Feb 2019
  22. 22.
    Nam, J.H., Sim, D.G.: Lossless video coding based on pixel-wise prediction. Multimedia Syst. 14(5), 291–298 (2008)CrossRefGoogle Scholar
  23. 23.
    Nemerson, E.: Squash Compression Benchmark. Data retrieved on 18 February 2018. http://quixdb.github.io/squash. Accessed 5 Feb 2019
  24. 24.
    Ogniewski, J., Forssén, P.E.: What is the best depth-map compression for depth image based rendering? In: Computer Analysis of Images and Patterns (CAIP), pp. 403–415. Ystad, Sweden (2017)Google Scholar
  25. 25.
    Pfeiffer, D., Franke, U.: Efficient representation of traffic scenes by means of dynamic Stixels. In: IEEE Intelligent Vehicles Symposium (IV), pp. 217–224. La Jolla, Carlifornia, USA (2010)Google Scholar
  26. 26.
    Pfeiffer, D., Franke, U.: Towards a Global optimal multi-layer Stixel representation of dense 3D data. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 51.1–51.12. Dundee, Schottland, UK (2011)Google Scholar
  27. 27.
    Pfeiffer, D., Gehrig, S., Schneider, N.: Exploiting the power of stereo confidences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 297–304. Portland, Oregon, USA (2013)Google Scholar
  28. 28.
    Rad, R.M., Attar, A., Shahbahrami, A.: A predictive algorithm for multimedia data compression. Multimedia Syst. 19(2), 103–115 (2013)CrossRefGoogle Scholar
  29. 29.
    Rao, Q., Grünler, C., Hammori, M., Chakraborty, S.: Stixel on the bus: an efficient lossless compression scheme for depth information in traffic scenarios. Multimedia Model. (MMM) I, 568–579. Dublin, Ireland (2014)CrossRefGoogle Scholar
  30. 30.
    Schneider, L., Cordts, M., Rehfeld, T., Pfeiffer, D., Enzweiler, M., Franke, U., Pollefeys, M., Roth, S.: Semantic Stixels: depth is not enough. In: IEEE Intelligent Vehicles Symposium (IV), pp. 110–117. Gotenburg, Sweden (2016)Google Scholar
  31. 31.
    Shannon, C.: A mathematical theory of communication. The Bell System Technical J. 27, 623–656 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Steinmetz, R.: Data compression in multimedia computing—principles and techniques. Multimedia Syst. 1(4), 166–172 (1994)CrossRefGoogle Scholar
  33. 33.
    Uhrig, J., Cordts, M., Franke, U., Brox, T.: Pixel-level encoding and depth layering for instance-level semantic labeling. In: German Conference on Pattern Recognition (GCPR), pp. 14–25. Hannover, Germany (2016)Google Scholar
  34. 34.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: LOCO-I: a low complexity, context-based, lossless image compression algorithm. In: Data Compression Conference (DCC), pp. 140–149. Snowbird, Utah, USA (1996)Google Scholar
  35. 35.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)CrossRefGoogle Scholar
  36. 36.
    World Wide Web Consortium: Graphics Interchange Format Specification, Version 89a (1989)Google Scholar
  37. 37.
    Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 45(4), 437–444 (1997)CrossRefGoogle Scholar
  38. 38.
    Yue, H., Revesz, P.Z.: TVICS: An efficient traffic video information converting system. In: International symposium on temporal representation and reasoning (TIME), pp. 141–148. Leicester, England, UK (2012)Google Scholar
  39. 39.
    Yue, H., Rilett, L.R., Revesz, P.Z.: Spatio-temporal traffic video data archiving and retrieval system. GeoInformatica 20(1), 59–94 (2016)CrossRefGoogle Scholar
  40. 40.
    Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik - Protokolle und Standards [Bus systems in vehicle technology—protocols and Standards]. Vieweg (2011)Google Scholar
  41. 41.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inform. Theory 23(3), 337–343 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technical University of MunichMunichGermany
  2. 2.Daimler AG, Research and DevelopmentSindelfingenGermany

Personalised recommendations