HVS-based scalable video watermarking

Video copyright protection against scalable coding using motion trajectory analysis in k(\(\hbox {t}+2\hbox {D}\))DWT domain
  • Mehran Deljavan Amiri
  • Ali Amiri
  • Majid MeghdadiEmail author
Regular Paper


Scalable coding methods are widely considered as promising coding approaches for image/video transmission in heterogeneous environments. To copyright protection of scalable coded videos, scalable video watermarking was introduced which enables reconstructing various scales of watermark from watermarked videos. This paper proposes a novel human vision system-based, spread spectrum method to scalable video watermarking. The host video is decomposed using newly proposed spatio-temporal motion-compensated 3D wavelet decomposition, called k(\(\hbox {t}+2\hbox {D}\)) DWT decomposition, to frequency sub-bands. A scalable decomposition of the watermark is inserted into the entire frequency sub-bands of decomposed video. At each frequency sub-band, the watermark data are inserted into the selected coefficients of the sub-band frames in a way that the watermark embedding visual artifact occurs in the highly textured, highly contrasted, and very dark/bright areas of the video frames. The experimental results show that the watermarked test videos are highly transparent and robust against scalable video coding even at very low decoding bit-rates and some other video processing attacks. The proposed approach can guarantee copyright protection for scalable coded videos, especially over heterogeneous networks.


Scalable watermarking Video coding Scalability Human vision system 3D DWT Motion trajectory analysis 



  1. 1.
    Abhayaratne, C., Bhowmik, D.: Scalable watermark extraction for real-time authentication of jpeg 2000 images. J. Real-Time Image Process. 8(3), 307–325 (2013)CrossRefGoogle Scholar
  2. 2.
    Akhaee, M.A., Marvasti, F.: A survey on digital data hiding schemes: principals, algorithms, and applications. ISC Int. J. Inf. Security 5(1), 5–36 (2013)Google Scholar
  3. 3.
    Amini, M., Ahmad, M., Swamy, M.: A robust multibit multiplicative watermark decoder using vector-based hidden Markov model in wavelet domain. IEEE Trans. Circuits Syst. Video Technol. 28, 402–413 (2016)CrossRefGoogle Scholar
  4. 4.
    Asikuzzaman, M., Alam, M.J., Lambert, A.J., Pickering, M.R.: Robust DT CWT-based DIBR 3D video watermarking using chrominance embedding. IEEE Trans. Multimed. 18(9), 1733–1748 (2016)CrossRefGoogle Scholar
  5. 5.
    Bahrami, Z., Akhlaghian Tab, F.: A new robust video watermarking algorithm based on surf features and block classification. Multimed. Tools Appl. 77, 1–19 (2016)Google Scholar
  6. 6.
    Bai, C., Kpalma, K., Ronsin, J.: Color textured image retrieval by combining texture and color features. In: Proceedings of the 20th European signal processing conference (EUSIPCO), pp. 170–174. IEEE (2012)Google Scholar
  7. 7.
    Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. 10(5), 783–791 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bashir, T., Usman, I., ur Rehman, J.: Secure digital watermarking using optimized improved spread spectrum and BCH coding for DIBR 3D-TV system. Multimed. Tools Appl. 75(13), 7697–7713 (2016)CrossRefGoogle Scholar
  9. 9.
    Bhowmik, D.: Robust watermarking techniques for scalable coded image and video. Ph.D. thesis, University of Sheffield (2011)Google Scholar
  10. 10.
    Bhowmik, D., Abhayaratne, C.: \(2\text{ d }+\text{ t }\) wavelet domain video watermarking. Adv. Multim. 2012, 6 (2012)CrossRefGoogle Scholar
  11. 11.
    Bhowmik, D., Abhayaratne, C.: Quality scalability aware watermarking for visual content. IEEE Trans. Image Process. 25(11), 5158–5172 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boroumand, M., Ebrahimi, A.: An improved quantization based watermarking scheme using local entropy in wavelet domain. In: IEEE international conference on signal and image processing applications (ICSIPA), pp. 268–272. IEEE (2009)Google Scholar
  13. 13.
    Buhari, A.M., Ling, H.C., Baskaran, V.M., Wong, K.: Low complexity watermarking scheme for scalable video coding. In: IEEE international conference on consumer electronics-Taiwan (ICCE-TW), pp. 1–2. IEEE (2016)Google Scholar
  14. 14.
    Chen, P., Woods, J.W.: Bidirectional MC-EZBC with lifting implementation. IEEE Trans. Circuits Syst. Video Technol. 14(10), 1183–1194 (2004)CrossRefGoogle Scholar
  15. 15.
    Chen, T.S., Chen, J., Chen, J.G.: A simple and efficient watermark technique based on jpeg2000 codec. Multimed. Syst. 10(1), 16–26 (2004)CrossRefGoogle Scholar
  16. 16.
    Chunhua, L., Li, F.: Adaptive image watermarking algorithm based on biorthogonal wavelet transform. In: International conference on E-business and E-government (ICEE), pp. 1–4. IEEE (2011)Google Scholar
  17. 17.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)zbMATHGoogle Scholar
  18. 18.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann, Burlington (2007)Google Scholar
  19. 19.
    Cui, C., Wang, S., Niu, X.: A novel watermarking for DIBR 3D images with geometric rectification based on feature points. Multimed. Tools Appl. 76(1), 649–677 (2017)CrossRefGoogle Scholar
  20. 20.
    Danyali, H.: Highly scalable wavelet image and video coding for transmission over heterogeneous networks. Ph.D. Thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong (2004)Google Scholar
  21. 21.
    Danyali, H., Deljavan Amiri, M.: A multiresolution robust watermarking approach for scalable wavelet image compression. In: International conference on advanced concepts for intelligent vision systems, pp. 57–66. Springer (2008)Google Scholar
  22. 22.
    Danyali, H., Mertins, A.: Flexible, highly scalable, object-based wavelet image compression algorithm for network applications. IEE Proc. Vis. Image Signal Process. 151(6), 498–510 (2004)CrossRefGoogle Scholar
  23. 23.
    Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Davis, G.M., Nosratinia, A.: Wavelet-based image coding: an overview. In: Datta, B.N. (ed.) Applied and computational control, signals, and circuits. Birkhäuser, Boston, MA (1999)Google Scholar
  25. 25.
    Deljavan Amiri, M., Danyali, H., Zahir-Azami, B.: An adaptive, robust and multiresolution image watermarking for progressive wavelet image coding. In: 6th international conference on wireless communications networking and mobile computing (WiCOM), pp. 1–4. IEEE (2010)Google Scholar
  26. 26.
    Deljavan Amiri, M., Danyali, H., Zahir-Azami, B.: Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms. ISC Int. J. Inf. Security 3(1), 51–66 (2011)Google Scholar
  27. 27.
    Deljavan Amiri, M., Danyali, H., Zahir-Azami, B., Tab, F.: Adaptive, scalable and robust watermarking for wavelet-based progressive image transmission. Imaging Sci. J. 61(2), 120–133 (2013)CrossRefGoogle Scholar
  28. 28.
    Dutta, T., Gupta, H.P.: A robust watermarking framework for high efficiency video coding (hevc)—encoded video with blind extraction process. J. Visual Commun. Image Represent. 38, 29–44 (2016)CrossRefGoogle Scholar
  29. 29.
    Fatemizadeh, E., Maneshi, M.: A new watermarking algorithm based on human visual system for content integrity verification of region of interest. Comput. Inform. 31(4), 877–899 (2012)Google Scholar
  30. 30.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing Prentice Hall. Pearson Education Inc., Upper Saddle River (2002)Google Scholar
  31. 31.
    He, K., Maillé, P., Simon, G.: Delivery of live watermarked video in CDN: fast and scalable algorithms. In: Proceedings of the 27th workshop on network and operating systems support for digital audio and video, pp. 79–84. ACM (2017)Google Scholar
  32. 32.
    Hsiang, S.: Highly scalable subband/wavelet image and video coding. Ph.D. Thesis, Rensselaer Polytechnic Institute (2002)Google Scholar
  33. 33.
    Lewis, A.S., Knowles, G.: Image compression using the 2-D wavelet transform. IEEE Trans. Image Process. 1(2), 244–250 (1992)CrossRefGoogle Scholar
  34. 34.
    Li, X., Wang, X., Yang, W., Wang, X.: A robust video watermarking scheme to scalable recompression and transcoding. In: 6th international conference on electronics information and emergency communication (ICEIEC), pp. 257–260. IEEE (2016)Google Scholar
  35. 35.
    Lumini, A., Maio, D.: A wavelet-based image watermarking scheme. In: International conference on information technology: coding and computing, pp. 122–127. IEEE (2000)Google Scholar
  36. 36.
    Makbol, N.M., Khoo, B.E., Rassem, T.H.: Block-based discrete wavelet transform-singular value decomposition image watermarking scheme using human visual system characteristics. IET Image Process. 10(1), 34–52 (2016)CrossRefGoogle Scholar
  37. 37.
    Mazumdar, H., Anand, P., Soni, S.J., Joshi, M., Rajeev, K., Rajak, M.: Human visual system models in digital watermarking. In: International conference and workshop on computing and communication (IEMCON), pp. 1–7. IEEE (2015)Google Scholar
  38. 38.
    Meerwald, P., Uhl, A.: Robust watermarking of H.264/SVC-encoded video: quality and resolution scalability. In: Kim, H.J., Shi, Y.Q., Barni, M. (eds.) Digital watermarking. IWDW 2010. Lecture notes in computer science, vol. 6256. Springer, Berlin, Heidelberg (2011)Google Scholar
  39. 39.
    Meerwald, P., Uhl, A.: An efficient robust watermarking method integrated in H.264/svc. In: Shi, Y.Q. (ed.) Transactions on data hiding and multimedia security VII. Lecture notes in computer science, vol. 7110. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Noorkami, M., Mersereau, R.M.: A framework for robust watermarking of h. 264-encoded video with controllable detection performance. IEEE Trans. Inf. Forensics Security 2(1), 14–23 (2007)CrossRefGoogle Scholar
  41. 41.
    Noorkami, M., Mersereau, R.M.: Digital video watermarking in p-frames with controlled video bit-rate increase. IEEE Trans. Inf. Forensics Security 3(3), 441–455 (2008)CrossRefGoogle Scholar
  42. 42.
    Ogawa, K., Ohtake, G.: Watermarking for hevc/h. 265 stream. In: IEEE international conference on consumer electronics (ICCE), pp. 102–103. IEEE (2015)Google Scholar
  43. 43.
    Pereira, S., Voloshynovskiy, S., Madueno, M., Marchand-Maillet, S., Pun, T.: Second generation benchmarking and application oriented evaluation. In: International workshop on information hiding, pp. 340–353. Springer (2001)Google Scholar
  44. 44.
    Petitcolas, F.A., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fatès, N.: Public automated web-based evaluation service for watermarking schemes: stirmark benchmark. Security Watermark. Multimed. Contents. 4314, 575–584 (2001)CrossRefGoogle Scholar
  45. 45.
    Piper, A.: Scalable watermarking for images. Ph.D. thesis, School of Computer Science and Software Engineering, University of Wollongong (2010)Google Scholar
  46. 46.
    Piper, A., Safavi-Naini, R.: Scalable fragile watermarking for image authentication. IET Inf. Security 7(4), 300–311 (2013)CrossRefGoogle Scholar
  47. 47.
    Rana, S., Gaj, S., Sur, A.: View invariant 3D video watermarking using depth based embedding. In: International conference on digital image computing: techniques and applications (DICTA), pp. 1–8. IEEE (2016)Google Scholar
  48. 48.
    Sahu, N., Sur, A.: Sift based video watermarking resistant to temporal scaling. J. Visual Commun. Image Represent. 45, 77–86 (2017)CrossRefGoogle Scholar
  49. 49.
    Sahu, N., Tiwari, V., Sur, A.: Robust video watermarking resilient to temporal scalability. In: Fifth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG), pp. 1–4. IEEE (2015)Google Scholar
  50. 50.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the h. 264/avc standard. IEEE Trans. Circuits Syst. Video Technol. 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  51. 51.
    Shi, F., Liu, S., Yao, H., Liu, Y., Zhang, S.: Scalable and credible video watermarking towards scalable video coding. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.Y., Kuo, C.C.J., Lew, M.S. (eds.) Advances in multimedia information processing - PCM 2010. Lecture notes in computer science, vol. 6297. Springer, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  52. 52.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  53. 53.
    Zhang, L., Zhu, Y., Po, L.M.: A novel watermarking scheme with compensation in bit-stream domain for h. 264/avc. In: IEEE international conference on acoustics speech and signal processing (ICASSP), pp. 1758–1761. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mehran Deljavan Amiri
    • 1
  • Ali Amiri
    • 1
  • Majid Meghdadi
    • 1
    Email author
  1. 1.Computer Engineering DepartmentUniversity of ZanjanZanjanIran

Personalised recommendations