Multimedia Systems

, Volume 22, Issue 6, pp 751–766 | Cite as

A look inside the Pl@ntNet experience

The good, the bias and the hope
  • Alexis JolyEmail author
  • Pierre Bonnet
  • Hervé Goëau
  • Julien Barbe
  • Souheil Selmi
  • Julien Champ
  • Samuel Dufour-Kowalski
  • Antoine Affouard
  • Jennifer Carré
  • Jean-François Molino
  • Nozha Boujemaa
  • Daniel Barthélémy
Special Issue Paper


Pl@ntNet is an innovative participatory sensing platform relying on image-based plants identification as a mean to enlist non-expert contributors and facilitate the production of botanical observation data. One year after the public launch of the mobile application, we carry out a self-critical evaluation of the experience with regard to the requirements of a sustainable and effective ecological surveillance tool. We first demonstrate the attractiveness of the developed multimedia system (with more than 90K end-users) and the nice self-improving capacities of the whole collaborative workflow. We then point out the current limitations of the approach towards producing timely and accurate distribution maps of plants at a very large scale. We discuss in particular two main issues: the bias and the incompleteness of the produced data. We finally open new perspectives and describe upcoming realizations towards bridging these gaps.


Mobile Application Android Collaborative Tool Taxonomic Profile Android Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Agropolis Foundation, as part of its first flagship project Pl@ntNet. We would like to thank numerous contributors from Tela Botanica and Pl@ntNet’s network, that share their data and expertise to develop such infrastructure. Finally, we also would like to thank Mrs. Lett for his careful reading and helpful comments.


  1. 1.
    Bakic, V., Yahiaoui, I., Mouine, S., Ouertani, S.L., Ouertani, W., Verroust-Blondet, A., Goëau, H., Joly, A., et al.: Inria imedia2’s participation at imageclef 2012 plant identification task. In: CLEF (Online Working Notes/Labs/Workshop) (2012)Google Scholar
  2. 2.
    Boom, B.J., He, J., Palazzo, S., Huang, P.X., Beyan, C., Chou, H.M., Lin, F.P., Spampinato, C., Fisher, R.B.: A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage. Ecol. Inf. 23, 83–97 (2014)CrossRefGoogle Scholar
  3. 3.
    Burke, J.A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. Center Embed. Netw. Sens. (2006)Google Scholar
  4. 4.
    Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: bird species recognition. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. ISSNIP 2007, pp 293–298. IEEE, New York (2007)Google Scholar
  5. 5.
    Caputo, B., Muller, H., Thomee, B., Villegas, M., Paredes, R., Zellhofer, D., Goeau, H., Joly, A., Bonnet, P., Gomez, J.M., et al.: Imageclef 2013: the vision, the data and the open challenges. In: Information Access Evaluation. Multilinguality, Multimodality, and Visualization, pp. 250–268. Springer, Berlin (2013)Google Scholar
  6. 6.
    Deblauwe, V., Couteron, P., Bogaert, J., Barbier, N.: Determinants and dynamics of banded vegetation pattern migration in arid climates. Ecol. Monogr. 82(1), 3–21 (2012)CrossRefGoogle Scholar
  7. 7.
    Duan, K., Parikh, D., Crandall, D., Grauman, K.: Discovering localized attributes for fine-grained recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3474–3481. IEEE, New York (2012)Google Scholar
  8. 8.
    Goëau, H., Bonnet, P., Barbe, J., Bakic, V., Joly, A., Molino, J.F., Barthelemy, D., Boujemaa, N.: Multi-organ plant identification. In: Proceedings of the 1st ACM International Workshop on Multimedia Analysis for Ecological Data, pp. 41–44. ACM, New York (2012)Google Scholar
  9. 9.
    Goëau, H., Bonnet, P., Joly, A., Affouard, A., Bakic, V., Barbe, J., Dufour, S., Selmi, S., Yahiaoui, I., Vignau, C., et al.: Pl@ ntnet mobile 2014: android port and new features. In: Proceedings of International Conference on Multimedia Retrieval, p. 527. ACM, New York (2014)Google Scholar
  10. 10.
    Goëau, H., Bonnet, P., Joly, A., Bakić, V., Barbe, J., Yahiaoui, I., Selmi, S., Carré, J., Barthélémy, D., Boujemaa, N., et al.: Pl@ ntnet mobile app. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 423–424. ACM, New York (2013)Google Scholar
  11. 11.
    Goëau, H., Bonnet, P., Joly, A., Bakic, V., Barthelemy, D., Boujemaa, N., Molino, J.F., et al.: The imageclef 2013 plant identification task. In: CLEF (2013)Google Scholar
  12. 12.
    Goëau, H., Bonnet, P., Joly, A., Barthelemy, D., Boujemaa, N., Molino, J.: The imageclef 2012 plant image identification task. In: ImageCLEF 2012 Working Notes (2012)Google Scholar
  13. 13.
    Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthelemy, D., Molino, J.F., Birnbaum, P., Mouysset, E., Picard, M., et al.: The imageclef 2011 plant images classi cation task. In: ImageCLEF 2011 (2011)Google Scholar
  14. 14.
    Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L., Molino, J.F., Birnbaum, P., Bathelemy, D., Boujemaa, N.: Visual-based plant species identification from crowdsourced data. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 813–814. ACM, New York (2011)Google Scholar
  15. 15.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005)CrossRefGoogle Scholar
  16. 16.
    Joly, A., Buisson, O.: Logo retrieval with a contrario visual query expansion. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 581–584. ACM, New York (2009)Google Scholar
  17. 17.
    Joly, A., Goëau, H., Bonnet, P., Bakić, V., Barbe, J., Selmi, S., Yahiaoui, I., Carré, J., Mouysset, E., Molino, J.F., et al.: Interactive plant identification based on social image data. Ecol. Inf. (2013)Google Scholar
  18. 18.
    Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W.P., Planque, R., Rauber, A., Fisher, R., Müller, H.: Lifeclef 2014: multimedia life species identification challenges. In: Information Access Evaluation. Multilinguality, Multimodality, and Interaction, pp. 229–249. Springer, Berlin (2014)Google Scholar
  19. 19.
    Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.: Leafsnap: a computer vision system for automatic plant species identification. In: Computer Vision-ECCV 2012, pp. 502–516. Springer, Berlin (2012)Google Scholar
  20. 20.
    Mikulik, A., Perdoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine quantization. Int. J. Comput. Vis. 103(1), 163–175 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 55–68. ACM, New York (2009)Google Scholar
  22. 22.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pp. 1–8. IEEE, New York (2007)Google Scholar
  23. 23.
    Sánchez, J., Perronnin, F., Akata, Z.: Fisher vectors for fine-grained visual categorization. In: FGVC Workshop in IEEE Computer Vision and Pattern Recognition (CVPR). IEEE, Colorado Springs États-Unis (2011).
  24. 24.
    Smeaton, A.F., O’Connor, E., Regan, F.: Multimedia information retrieval and environmental monitoring: shared perspectives on data fusion. Ecol. Inf. 23, 118–125 (2014)CrossRefGoogle Scholar
  25. 25.
    Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y.H.J., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of the First ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, pp. 45–50. ACM, New York (2010)Google Scholar
  26. 26.
    Torres, M., Qiu, G.: Automatic habitat classification using image analysis and random forest. Ecol. Inf. 23, 126–136 (2014)CrossRefGoogle Scholar
  27. 27.
    Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for fine-grained image categorization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1577–1584. IEEE, New York (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexis Joly
    • 1
    Email author
  • Pierre Bonnet
    • 2
  • Hervé Goëau
    • 3
  • Julien Barbe
    • 4
  • Souheil Selmi
    • 5
  • Julien Champ
    • 1
  • Samuel Dufour-Kowalski
    • 4
  • Antoine Affouard
    • 6
  • Jennifer Carré
    • 7
  • Jean-François Molino
    • 6
  • Nozha Boujemaa
    • 3
  • Daniel Barthélémy
    • 8
  1. 1.Inria, LirmmMontpellierFrance
  2. 2.CIRAD, AMAPMontpellierFrance
  3. 3.InriaSaclayFrance
  4. 4.Inra, AMAPMontpellierFrance
  5. 5.InriaRocuencourtFrance
  6. 6.IRD, AMAPMontpellierFrance
  7. 7.Tela-BotanicaMontpellierFrance
  8. 8.CIRAD, BIOSMontpellierFrance

Personalised recommendations