Advertisement

Multimedia Systems

, Volume 22, Issue 2, pp 197–211 | Cite as

Scene-based fingerprinting method for traitor tracing

  • Sachin Mehta
  • Rajarathnam Nallusamy
  • Balakrishnan Prabhakaran
Regular Paper
  • 211 Downloads

Abstract

In this paper, scene-based fingerprinting method for traitor tracing is proposed which is computationally less complex and handles large user group, say 1011 users while requiring few frames to embed the watermark. The proposed method uses QR code as a watermark due to its three main features: (1) inherent templates, (2) noise resiliency, and (3) compact size. The proposed method creates the QR code watermark on-the-fly which is then segmented and embedded parallely inside the scenes of video using the watermarking key. The features of QR code, segmentation, and watermarking key not only help the proposed method in supporting a large user group but also make it computationally fast. Further, synchronization issues may arise due to addition and deletion of scenes. To avoid such scenarios, the proposed method matches the inherent templates present in QR code with the templates present in the segments of the extracted watermark. Experimental results show that the proposed method is computationally efficient and is robust against attacks such as collusion, scene dropping, scene addition, and other common signal processing attacks.

Keywords

Traitor tracing Watermarking Fingerprinting QR code 

Notes

Acknowledgments

We would like to thank Infosys Lab, Infosys Limited for providing us an opportunity to carry out this work. We would also like to thank the editor and reviewers for their useful comments and suggestions. Balakrishnan Prabhakaran is supported by the National Science Foundation under Grant No. 1012975. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    Ahmed, N., Natarajan, T., Rao, K.: Discrete cosine transform. IEEE Trans. Comput. C-23(1), 90–93 (1974). doi: 10.1109/T-C.1974.223784
  2. 2.
    Anderson, R., Manifavas, C.: Chameleon: a new kind of stream cipher. In: Biham, E. (ed.) Fast Software Encryption. Lecture Notes in Computer Science, vol. 1267, pp. 107–113. Springer, Berlin (1997)CrossRefGoogle Scholar
  3. 3.
    Bianchi, T., Piva, A.: Secure watermarking for multimedia content protection: a review of its benefits and open issues. IEEE Signal Process. Mag. 30(2), 87–96 (2013)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Byers, S., Cranor, L.F., Cronin, E., Korman, D., McDaniel, P.: An analysis of security vulnerabilities in the movie production and distribution process. Telecommun. Policy 28(7–8), 619–644 (2004)CrossRefGoogle Scholar
  6. 6.
    Celik, M., Lemma, A., Katzenbeisser, S., van der Veen, M.: Lookup-table-based secure client-side embedding for spread-spectrum watermarks. IEEE Trans. Inf. Forensics Secur. 3(3), 475–487 (2008)CrossRefGoogle Scholar
  7. 7.
    Chan, P.W., Lyu, M., Chin, R.: A novel scheme for hybrid digital video watermarking: approach, evaluation and experimentation. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1638–1649 (2005)CrossRefGoogle Scholar
  8. 8.
    Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Cox, I.J., Kilian, J., Leighton, F., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  10. 10.
    Darazi, R., Callau, P., Macq, B.: Secure and HVS-adaptive exhibition spread transform dither modulation watermarking for digital cinema. In: First IEEE International Workshop on Information Forensics and Security, 2009 (WIFS 2009), pp. 1–5 (2009)Google Scholar
  11. 11.
    Deng, M., Bianchi, T., Piva, A., Preneel, B.: An efficient buyer–seller watermarking protocol based on composite signal representation. In: Proceedings of the 11th ACM Workshop on Multimedia and Security (MM&Sec ’09), pp. 9–18. ACM, New York (2009)Google Scholar
  12. 12.
    Dittmann, J., Schmitt, P., Saar, E., Ueberberg, J., Schwenk, J.: Combining digital watermarks and collusion secure fingerprints for digital images. J. Electron. Imaging 9(4), 456–467 (2000)CrossRefGoogle Scholar
  13. 13.
    Hartung, F., Girod, B.: Watermarking of uncompressed and compressed video. Signal Process. 66(3), 283–301 (1998). doi: 10.1016/S0165-1684(98)00011-5. http://dx.doi.org/10.1016/S0165-1684(98)00011-5
  14. 14.
    He, S., Wu, M.: Collusion-resistant video fingerprinting for large user group. IEEE Trans. Inf. Forensics Secur. 2(4), 697–709 (2007). doi: 10.1109/TIFS.2007.908179 CrossRefGoogle Scholar
  15. 15.
    Huang, H.C., Chang, F.C., Fang, W.C.: Reversible data hiding with histogram-based difference expansion for QR code applications. IEEE Trans. Consum. Electron. 57(2), 779–787 (2011). doi: 10.1109/TCE.2011.5955222 CrossRefGoogle Scholar
  16. 16.
    Klaue, J., Rathke, B., Wolisz, A.: EvalVid a framework for video transmission and quality evaluation. In: Kemper, P., Sanders, W. (eds.) Computer Performance Evaluation. Modelling Techniques and Tools. Lecture Notes in Computer Science, vol. 2794, pp. 255–272. Springer, Berlin (2003)CrossRefGoogle Scholar
  17. 17.
    Mehta, S., Varadharajan, V., Nallusamy, R.: On-the-fly watermarking of videos for real-time applications. In: 2012 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 55–60 (2012). doi: 10.1109/ICMEW.2012.17
  18. 18.
    Piva, A., Bianchi, T., De Rosa, A.: Secure client-side ST-DM watermark embedding. IEEE Trans. Inf. Forensics Secur. 5(1), 13–26 (2010)CrossRefGoogle Scholar
  19. 19.
    Shahid, Z., Chaumont, M., Puech, W.: Spread spectrum-based watermarking for Tardos code-based fingerprinting for H.264/AVC video. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2105–2108 (2010)Google Scholar
  20. 20.
    Swaminathan, A., He, S., Wu, M.: Exploring QIM-based anti-collusion fingerprinting for multimedia. Proc. SPIE 6072, Security, Steganography, and Watermarking of Multimedia Contents VIII, 60721T (2006)Google Scholar
  21. 21.
    Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 10:1–10:24 (2008)Google Scholar
  22. 22.
    Tomas-Buliart, J., Fernandez, M., Soriano, M.: Improvement of collusion secure convolutional fingerprinting information codes. In: Desmedt, Y. (ed.) Information Theoretic Security. Lecture Notes in Computer Science, vol. 4883, pp. 76–88. Springer, Berlin (2009)CrossRefGoogle Scholar
  23. 23.
    Trappe, W., Wu, M., Liu, K.: Collusion-resistant fingerprinting for multimedia. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. IV-3309–IV-3312 (2002)Google Scholar
  24. 24.
    Trappe, W., Wu, M., Wang, Z., Liu, K.: Anti-collusion fingerprinting for multimedia. IEEE Trans. Signal Process. 51(4), 1069–1087 (2003)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Vashistha, A., Nallusamy, R., Paul, S.: 2PASCD: an efficient 2-pass abrupt scene change detection algorithm. In: Proceedings of the 2010 International Conference on Multimedia Information Networking and Security (MINES ’10), pp. 44–48. IEEE Computer Society, Washington, DC (2010)Google Scholar
  26. 26.
    Voyatzis, G., Pitas, I.: Applications of toral automorphisms in image watermarking, vol. 2. In: Proceedings, International Conference on Image Processing, vol. 1, pp. 237–240 (1996)Google Scholar
  27. 27.
    Zhao, H., Liu, K.: Fingerprint multicast in secure video streaming. IEEE Trans. Image Process. 15(1), 12–29 (2006)CrossRefGoogle Scholar
  28. 28.
    Zhu, Y., Feng, D., Zou, W.: Collusion secure convolutional spread spectrum fingerprinting. In: Barni, M., Cox, I., Kalker, T., Kim, H.J. (eds.) Digital Watermarking. Lecture Notes in Computer Science, vol. 3710, pp. 67–83. Springer, Berlin (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sachin Mehta
    • 1
  • Rajarathnam Nallusamy
    • 2
  • Balakrishnan Prabhakaran
    • 3
  1. 1.AMD India Pvt. Ltd.BangaloreIndia
  2. 2.Embnology Solutions Private LimitedBangaloreIndia
  3. 3.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations