Multimedia Systems

, Volume 21, Issue 5, pp 465–484 | Cite as

ALD: adaptive layer distribution for scalable video

  • Jason J. QuinlanEmail author
  • Ahmed H. Zahran
  • Cormac J. Sreenan
Regular Paper


Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.


Scalable video Lossy networks Layered coding  Error resilience Layer distribution 



The authors acknowledge the support of Science Foundation Ireland (SFI) under Research Grant 10RFP/CMS2952. The authors would like also to acknowledge the support of the National Telecommunication Regulation Authority (NTRA) of Egypt.


  1. 1.
  2. 2.
    Bai, H., Wang, A., Zhao, Y., Pan, J.S., Abraham, A.: Distributed multiple description coding. Principles, algorithms and systems. Springer-Verlag New York Inc, (2011)CrossRefGoogle Scholar
  3. 3.
    Berkin Abanoz, T., Murat Tekalp, A.: SVC-based scalable multiple description video coding and optimization of encoding configuration. Signal Processing: Image Communication 24(9), 691–701 (2009)Google Scholar
  4. 4.
    Bossen, F.: Common HM test conditions and software reference configurations JCTVC-L1100 of JCT-VC, Geneva, CH, (2013)Google Scholar
  5. 5.
    Chou, P., Wang, H.: Layered multiple description coding. IEEE International Packet Video Workshop (PV2003) (2003)Google Scholar
  6. 6.
  7. 7.
    Wu, D., et al.: Streaming video over the Internet: approaches and directions. IEEE Trans. Circuits and Systems for Video Technology 11(3), 282–300 (2001)CrossRefGoogle Scholar
  8. 8.
    Dai, M., Loguinov, D., Radha, H.: Rate-distortion analysis and quality control in scalable internet streaming. IEEE Transactions on Multimedia 8(6), 1135–1146 (2006)CrossRefGoogle Scholar
  9. 9.
    Dutta, A., Chennikara, J., Chen, W., Altintas, O., Schulzrinne, H.: Multicasting streaming media to mobile users. Communications Magazine, IEEE 41(10), 81–89 (2003)CrossRefGoogle Scholar
  10. 10.
    Eichhorn, A., Ni, P.: Pick your layers wisely—a quality assessment of h.264 scalable video coding for mobile devices. In: Communications, 2009. ICC ’09. IEEE International Conference on, pp. 1–6 (2009). doi: 10.1109/ICC.2009.5305948
  11. 11.
    Gan, T., Gan, L., Ma, K.K.: Reducing video-quality fluctuations for streaming scalable video using unequal error protection, retransmission, and interleaving. IEEE Transactions on Image Processing 15(4), 819–832 (2006)CrossRefGoogle Scholar
  12. 12.
    Goyal, V.: Multiple description coding: compression meets the network. Signal Process Mag 18(5), 74–93 (2002)CrossRefGoogle Scholar
  13. 13.
    Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B., Hadar, O.: Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders. In: Picture Coding Symposium (PCS), 2013, pp 394–397 (2013)Google Scholar
  14. 14.
    Schwarz, H., et al.: Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circuits and Systems for Video Technology 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  15. 15.
    Ke, C.H.: myEvalSVC: an Integrated Simulation Framework for Evaluation of H.264/SVC Transmission. KSII Transactions on Internet and Information Systems 6(1), 379–394 (2012)Google Scholar
  16. 16.
    Kirihara, K., Masuyama, H., Kasahara, S., Takahashi, Y.: FEC Recovery Performance for Video Streaming Services Based on H. 264/SVC. Recent Advances on Video Coding, InTech (2011)Google Scholar
  17. 17.
    Kuschnig, R., Kofler, I., Hellwagner, H.: Evaluation of HTTP-based request-response streams for internet video streaming. Proc. of ACM Multimedia Systems Conference (MMSys ’11) (2011)Google Scholar
  18. 18.
    Lee, J.S., De Simone, F., Ramzan, N., Zhao, Z., Kurutepe, E., Sikora, T., Ostermann, J., Izquierdo, E., Ebrahimi, T.: Subjective evaluation of scalable video coding for content distribution. In: Proceedings of the International Conference on Multimedia, MM ’10, pp. 65–72. ACM, New York, NY, USA (2010). DOI: 10.1145/1873951.1873981.
  19. 19.
    Li, L., Han, Q., Niu, X.: Enhanced Adaptive FEC Based Multiple Description Coding for Internet Video Streaming over Wireless Network. In: Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2010 Sixth International Conference on, pp. 478–481 (2010)Google Scholar
  20. 20.
    Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine 46(1), 72–79 (2008)CrossRefGoogle Scholar
  21. 21.
    Oelbaum, T., Schwarz, H., Wien, M., Wiegand, T.: Subjective performance evaluation of the svc extension of h.264/avc. In: Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pp. 2772–2775 (2008). doi: 10.1109/ICIP.2008.4712369
  22. 22.
    Przybylski, M., Belter, B., Binczewski, A.: Shall we worry about Packet Reordering? Computational Methods in Science and Technology pp. 141–146 (2005)Google Scholar
  23. 23.
    Puri, R., Ramchandran, K., Lee, K.: Forward error correction (FEC) codes based multiple description coding for Internet video streaming and multicast. Signal Process Image Commun 16(8), 745–762 (2001)CrossRefGoogle Scholar
  24. 24.
    Quinlan, J.J., Zahran, A., Sreenan, C.J.: SDC: Scalable Description Coding for Adaptive Streaming Media. In: Proc. of 19th IEEE International Packet Video Workshop (PV2012) (2012)Google Scholar
  25. 25.
    Quinlan, J.J., Zahran, A., Sreenan, C.J.: ALD: Adaptive Layer Distribution for Scalable Video. Proc. of ACM Multimedia Systems Conference (MMSys ’13) (2013)Google Scholar
  26. 26.
    Reichel, J., Schwarz, H., Wien, M.: Joint scalable video model 11 (JSVM 11). Joint Video Team, doc. (2007)Google Scholar
  27. 27.
    Salomon, D.: Guide to Data Compression Methods. Springer, (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Schierl, T., Stockhammer, T., Wiegand, T.: Mobile Video Transmission Using Scalable Video Coding. IEEE Trans. Circuits and Systems for Video Technology 17(9), 1204–1217 (2007)CrossRefGoogle Scholar
  29. 29.
    Sintel, the Durian Open Movie Project:
  30. 30.
    Shokrollahi, A.: Raptor codes. Information Theory, IEEE Trans. on 52(6), 2551–2567 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Sorensen, J., Ostergaard, J., Popovski, P., Chakareski, J.: Multiple description coding with feedback based network compression. In: Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pp. 1–6 (2010). doi: 10.1109/GLOCOM.2010.5684254
  32. 32.
    Sreenan, C., Chen, J.C., Agrawal, P., Narendran, B.: Delay reduction techniques for playout buffering. IEEE Transactions on Multimedia 2(2), 88–100 (2000)CrossRefGoogle Scholar
  33. 33.
    Steinbach, E., Färber, N., Girod, B.: Adaptive playout for low latency video streaming. Proc. International Conference on Image Processing (2001)Google Scholar
  34. 34.
    Stockhammer, T.: Dynamic Adaptive Streaming over HTTP—Standards and Design Principles. In: MMSys ’11 Proceedings of the second annual ACM conference on Multimedia systems, p. 133. ACM Press, New York (2011)Google Scholar
  35. 35.
    The Network Simulator—ns-2:
  36. 36.
    Unanue, I., Urteaga, I., Husemann, R., Del Ser, J., Roesler, V., Rodriguez, A., Sanchez, P.: A Tutorial on H.264/SVC Scalable Video Coding and its Tradeoff between Quality, Coding Efficiency and Performance. In: Recent Advances on Video Coding, pp. 1–24. InTech (2011)Google Scholar
  37. 37.
    Video traces for network performance evaluation:
  38. 38.
    Wang, B., Kurose, J., Shenoy, P., Towsley, D.: Multimedia streaming via TCP: an analytic performance study. ACM Transactions on Multimedia Computing, Communications and Applications 4(2) (2008)Google Scholar
  39. 39.
    Wang, Y., Lin, T.L., Cosman, P.: Packet dropping for H.264 videos considering both coding and packet-loss artifacts. Packet Video Workshop (PV), 2010 18th International pp. 165–172 (2010)Google Scholar
  40. 40.
    Zhao Z., et al.: Multiple description scalable coding for video streaming. 2009 10th Workshop Image Analysis for Multimedia Interactive Services. WIAMIS ’09. pp. 21–24 (2009)Google Scholar
  41. 41.
    Zhao, Z., Ostermann, J.: Video streaming using standard-compatible scalable multiple description coding based on SVC. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 1293–1296 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jason J. Quinlan
    • 1
    Email author
  • Ahmed H. Zahran
    • 2
  • Cormac J. Sreenan
    • 1
  1. 1.Department of Computer ScienceUniversity College CorkCorkIreland
  2. 2.Electronics and Electrical Communications DepartmentCairo UniversityGizaEgypt

Personalised recommendations