Multimedia Systems

, Volume 20, Issue 5, pp 521–544 | Cite as

SLA-based operations of massively multiplayer online games in clouds

Special Issue Paper

Abstract

Successful massively multiplayer online games (MMOGs) have today millions of registered users and hundreds of thousands of active concurrent players. To be able to guarantee quality of service (QoS) to a highly variable number of concurrent users, game operators statically over-provision a large infrastructure capable of sustaining the game peak load, even though a large portion of the resources is unused most of the time. To address this problem, we introduce in this work a new MMOG ecosystem for hosting and provisioning of MMOGs which effectively splits the traditional monolithic MMOG companies into three main service providers: game providers, game operators, and resource providers. Their interaction is regulated through comprehensive service level agreements (SLA) that establish the price, terms of operation, and compensation for service violations. In our model, game operators efficiently provision resources for MMOGs from multiple cloud providers, based on dynamic load forecasts, and ensure proper game operation that maintains the required QoS to all clients under varying resource availability. Game providers manage multiple distributed MMOGs for which they lease services under strict operational SLAs from game operators to satisfy all client requests. These three self-standing, smaller, more agile service providers enable access to the MMOG market for the small and medium enterprises, and to the current commercial cloud providers. We evaluate, through simulations based on real-life MMOG traces and commercial cloud SLAs, the impact of resource availability on the QoS offered to the MMOG clients. We find that our model can mitigate the negative effects of resource failures within four minutes and that MMOG server consolidation can accentuate the negative effects of failures in a resource-scarce environment. We further investigate different methods of ranking MMOG operational offers with either single or multiple (competing) MMOG providers. Our results show that compensations for SLA faults in the offer selection process can lead up to 11–16 % gain in the game providers’ income. We also demonstrate that adequate ranking of offers can lead to MMOG operational cost reductions from 20 up to 60 %.

Keywords

MMOG Cloud computing Fault tolerance QoS SLA 

References

  1. 1.
    MMOData.net: Mmodata.net keeping track of the mmog scene (v3.4). Online. Available: http://mmodata.net/ (2011). http://mmodata.net/
  2. 2.
    Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively multiplayer online games. IEEE Trans. Parallel Distrib. Syst. 22(3), 380–395 (2011). doi:10.1109/TPDS.2010.82 CrossRefGoogle Scholar
  3. 3.
    Nae, V., Prodan, R., Iosup, A., Fahringer, T.: A new business model for massively multiplayer online games. In: Proceeding of the Second Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 271–282. ACM, New York, (2011). doi:10.1145/1958746.1958785
  4. 4.
    Chronz, P., Wieder, P.: Integrating WS-Agreement with a framework for service-oriented infrastructures. In: 11th IEEE/ACM International Conference on Grid Computing, pp. 225–232, IEEE (2010)Google Scholar
  5. 5.
    Talia, D., Yahyapour, R., Ziegler, W., Wieder, P., Seidel, J., Waldrich, O., Ziegler, W., Yahyapour, R.: Using SLA for resource management and scheduling—a survey. In: Talia, D., Yahyapour, R., Ziegler W. (eds.) Grid Middleware and Services: Challenges and Solutions, pp. 335–347. Springer, Berlin (2008)Google Scholar
  6. 6.
    Wu, L., Buyya, R.: Service level agreement (sla) in utility computing systems. CoRR abs/1010.2881 (2010)Google Scholar
  7. 7.
    Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: SNAP: a protocol for negotiating service level agreements and coordinating resource management in distributed systems. In: Revised papers from the 8th International Workshop on Job Scheduling Strategies for Parallel Processing, pp. 153–183. Springer-Verlag, London, UK (2002)Google Scholar
  8. 8.
    Wu, L., Garg, S.K., Buyya, R.: SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments. In: 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 195–204, IEEE Computer Society Washington, DC, USA (2011)Google Scholar
  9. 9.
    Iosup, A., Yigitbasi, N., Epema, D.H.J.: On the performance variability of production cloud services. In: 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 104–113, IEEE Computer Society Washington, DC, USA (2011)Google Scholar
  10. 10.
    Andrieux A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification (WS-Agreement). Protocol, v.1.0, OGF, GRAAP Work Group (2007). Available online: http://www.ogf.org/documents/GFD.107.pdf
  11. 11.
    Vogels, W.D.D.: An overview of the galaxy management framework for scalable enterprise cluster computing. In: International Conference on Cluster Computing, pp. 109–118, IEEE (2000)Google Scholar
  12. 12.
    Appleby, K., et al.: Océano—SLA based management of a computing utility. In: IEEE/IFIP International Symposium on Integrated Network Management, pp. 855–868, IEEE (2001)Google Scholar
  13. 13.
    Marzolla, M., Ferretti, S., D’Angelo, G.: Dynamic resource provisioning for cloud-based gaming infrastructures. ACM Comput. Entertain. 10(3), 4:1–4:20 (2012)Google Scholar
  14. 14.
    Duong, T.N.B., Li, X., Goh, R.S.M., Tang, X., Cai, W.: Qos-aware revenue-cost optimization for latency-sensitive services in iaas clouds. In: 16th International Symposium on Distributed Simulation and Real Time Applications, pp. 11–18. IEEE Computer Society (2012)Google Scholar
  15. 15.
    Nae, V., Iosup, A., Podlipnig, S., Prodan, R., Epema, D.H.J., Fahringer, T.: Efficient management of data center resources for massively multiplayer online games. In: ACM/IEEE Conference on Supercomputing, Article No. 10, IEEE Press Piscataway, NJ, USA, p. 10 (2008)Google Scholar
  16. 16.
    Glinka, F., Ploss, A., Müller-Iden, J., Gorlatch, S.: RTF: a real-time framework for developing scalable multiplayer online games. In: NetGames ’07 6th ACM SIGCOMM workshop on Network and system support for games, pp. 81–86. ACM (2007). doi:10.1145/1326257.1326272
  17. 17.
    Prodan, R., Nae, V.: Prediction-based real-time resource provisioning for massively multiplayer online games. Future Gener. Comput. Syst. (FGCS) 25(7), 785–793, Elsevier (2009). doi:10.1016/j.future.2009.03.003. http://www.sciencedirect.com/science/article/B6V06-4V0MJ6H-1/2/45b9cd3f8de8d176aebbeb9594231a1d
  18. 18.
    Nae, V., Iosup, A., Prodan, R., Fahringer, T.: The impact of virtualization on the performance of massively multiplayer online games. In: NetGames’09 proceedings of the 8th Annual Workshop on Network and systems support for games, Article No. 9, IEEE Press Piscataway, NJ, USA (2009). doi:10.1109/NETGAMES.2009.5446227. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5446227
  19. 19.
    Iosup, A., Nae, V., Prodan, R.: The impact of virtualization on the performance and operational costs of massively multiplayer online games. Int. J. Adv. Media Commun. (IJAMC) 4, 364–386 (2011). doi:10.1504/IJAMC.2010.036836 CrossRefGoogle Scholar
  20. 20.
    Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.H.J.: Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)CrossRefGoogle Scholar
  21. 21.
    Iosup, A., Jan, M., Sonmez, O., Epema, D.H.J.: On the dynamic resource availability in grids. In: 8th IEEE/ACM International Conference on Grid Computing, pp. 26–33. IEEE Computer Society (2007). doi:10.1109/GRID.2007.4354112
  22. 22.
    Kohana, M., Okamoto, S., Ikegami, A.: Optimal data allocation for keeping fairness of online game. In: 26th International Conference on Advanced Information Networking and Applications Workshops, pp. 1209–1214. IEEE Computer Society (2012)Google Scholar
  23. 23.
    Wong, K.: Resource allocation for massively multiplayer online games using fuzzy linear assignment technique. In: 5th IEEE Consumer Communications and Networking Conference, pp. 1035–1039. IEEE (2008)Google Scholar
  24. 24.
    Briceño, L.D., et al.: Robust resource allocation in a massive multiplayer online gaming environment. In: 4th International Conference on Foundations of Digital Games, pp. 232–239. ACM (2009). doi:10.1145/1536513.1536556
  25. 25.
    Lee, Y.T., Chen, K.T.: Is server consolidation beneficial to MMORPG? A case study of World of Warcraft. Cloud Computing, IEEE International Conference on Cloud Computing, pp. 435–442, IEEE Computer Society Washington, DC, USA (2010). doi:10.1109/CLOUD.2010.57
  26. 26.
    Middleton, S., Surridge, M., Nasser, B., Yang, X.: Bipartite electronic SLA as a business framework to support cross-organization load management of real-time online applications. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R., Sousa, L. and Streit, A. (eds.) Euro-Par 2009 – Parallel Processing Workshops, Lecture Notes in Computer Science, vol. 6043, 2010, pp 245–254, Springer, Berlin, Heidelberg (2009)Google Scholar
  27. 27.
    Alves, T., Roque, L.: Using value nets to map emerging business models in massively multiplayer online games. In: Ninth Pacific Asia Conference on Information Systems, pp. 1356–1367, PACIS proceedings. Available online: http://www.pacis-net.org/ (2005)
  28. 28.
    Andersson, B., Bergholtz, M., Edirisuriya, M., Ilayperuma, T., Jayaweera, P., Johannesson, P., Zdravkovic, J.: On the alignment of goal models and business models. In: A Celebration of the REA Enterprise Ontology, Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-12144 (2007)
  29. 29.
    Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Jayaweera, P., Johannesson, P., Zdravkovic, J.: Enterprise sustainability through the alignment of goal models and business models. In: 3rd International Workshop on Business/IT Alignment and Interoperability, vol. 336, pp. 73–87, CAiSE 2008, Montpelier, June (2008)Google Scholar
  30. 30.
    Nojima, M.: Pricing models and motivations for MMO play. In: B. Akira (ed.) Situated Play: Proceedings of the 2007 Digital Games Research Association Conference, pp. 672–681. Tokyo (2007)Google Scholar
  31. 31.
    Oh, G., Ryu, T.: Game design on item-selling based payment model in Korean online games. In: Akira, B. (ed.) Situated Play: Digital Games Research Association Conference, pp. 650–657. Tokyo (2007)Google Scholar
  32. 32.
    Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  33. 33.
    Hasselmeyer, P., Mersch, H., Koller, B., Quyen, H.N., Schubert, L., Wieder, P.: Implementing an SLA negotiation framework. In: Cunningham, P., Cunningham, M., (eds.) Expanding the Knowledge Economy: Issues, Applications, Case Studies, ISBN: 978-1586038014, pp. 154–161 (2007)Google Scholar
  34. 34.
    Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level agreements for web services. J. Netw. Syst. Manage. 11(1), 57–81, (2003)CrossRefGoogle Scholar
  35. 35.
    Siddiqui, M., Villazón, A., Fahringer, T.: Grid allocation and reservation—grid capacity planning with negotiation-based advance reservation for optimized QoS. In: ACM/IEEE Conference on Supercomputing, p. 103, ACM, New York, NY, USA (2006)Google Scholar
  36. 36.
    Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S., Zhang, J.Y.: Autonomous service level agreement negotiation for service composition provision. Future Gener. Comp. Syst. 23(6), 748–759 (2007)CrossRefGoogle Scholar
  37. 37.
    Kertész, A., Kecskemeti, G., Brandic, I.: Autonomic SLA-aware service virtualization for distributed systems. In: 19th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp. 503–510, IEEE Computer Society (2011)Google Scholar
  38. 38.
    Netto, M.A.S.: Canpro: a conflict-aware protocol for negotiation of cloud resources and services. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R., (eds.) Service-Oriented Computing, Lecture Notes in Computer Science, vol. 7084, pp. 541–548, Springer, Berlin, Heidelberg (2011)Google Scholar
  39. 39.
    Irwin, D.E., Grit, L.E., Chase, J.S.: Balancing risk and reward in a market-based task service. In: 13th IEEE International Symposium on High Performance Distributed Computing, pp. 160–169, IEEE Computer Society Washington, DC, USA (2004)Google Scholar
  40. 40.
    In, J.-U.K., Avery, P., Cavanaugh, R., Ranka, S.: Policy based scheduling for simple quality of service in grid computing. In: 18th International Parallel and Distributed Processing Symposium, IEEE Computer Society (2004)Google Scholar
  41. 41.
    Ranjan, R., Harwood, A., Buyya, R.: SLA-based coordinated superscheduling scheme for computational grids. In: IEEE International Conference on Cluster Computing, p. 8, (2006)Google Scholar
  42. 42.
    Dumitrescu, C., Raicu, I., Foster, I.T.: The design, usage, and performance of GRUBER: a grid usage service level agreement based brokering infrastructure. J. Grid Comput. 5, 99–126 (2007)CrossRefGoogle Scholar
  43. 43.
    Netto, M.A.S., Bubendorfer, K., Buyya, R.: SLA-based advance reservations with flexible and adaptive time qos parameters. In: 5th International Conference on Service-Oriented Computing, pp. 119–131, Springer-Verlag, Berlin, Heidelberg (2007)Google Scholar
  44. 44.
    Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance for hpc with xen virtualization. In: Proceedings of the 21st Annual International Conference on Supercomputing, ICS ’07, pp. 23–32. ACM (2007). doi:10.1145/1274971.1274978
  45. 45.
    Nurmi, D., Brevik, J., Wolski, R.: Modeling machine availability in enterprise and wide-area distributed computing environments. In: Euro-Par 2005 Parallel Processing, LNCS, vol. 3648, pp. 612–612. Springer (2005). doi:10.1007/11549468_50
  46. 46.
    Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance computing systems. IEEE Trans. Dependable Secur. Comput. 7(4), 337 –351 (2010). doi:10.1109/TDSC.2009.4 CrossRefGoogle Scholar
  47. 47.
    Bhagwan, R., Savage, S., Voelker, G.: Understanding availability. In: Peer-to-Peer Systems II, LNCS, vol. 2735, pp. 256–267. Springer (2003). doi:10.1007/978-3-540-45172-3_24
  48. 48.
    Holthe, O.I., Mogstad, O., Ronningen, L.A.: Geelix LiveGames: Remote playing of video games. In: 6th IEEE Consumer Communications and Networking Conference (CCNC) (2009). pp. 758–759, IEEE Press Piscataway, NJ, USA, ISBN:978-1-4244-2308-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Faculty of Engineering, Mathematics and Computer ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations