Multimedia Systems

, Volume 20, Issue 2, pp 239–252 | Cite as

On robustness against JPEG2000: a performance evaluation of wavelet-based watermarking techniques

Regular Paper

Abstract

With the emergence of new scalable coding standards, such as JPEG2000, multimedia is stored as scalable coded bit streams that may be adapted to cater network, device and usage preferences in multimedia usage chains providing universal multimedia access. These adaptations include quality, resolution, frame rate and region of interest scalability and achieved by discarding least significant parts of the bit stream according to the scalability criteria. Such content adaptations may also affect the content protection data, such as watermarks, hidden in the original content. Many wavelet-based robust watermarking techniques robust to such JPEG2000 compression attacks are proposed in the literature. In this paper, we have categorized and evaluated the robustness of such wavelet-based image watermarking techniques against JPEG2000 compression, in terms of algorithmic choices, wavelet kernel selection, subband selection, or watermark selection using a new modular framework. As most of the algorithms use a different set of parametric combination, this analysis is particularly useful to understand the effect of various parameters on the robustness under a common platform and helpful to design any such new algorithm. The analysis also considers the imperceptibility performance of the watermark embedding, as robustness and imperceptibility are two main watermarking properties, complementary to each other.

Keywords

Wavelet-based image watermarking Watermarking evaluation Robustness Scalable coding Content adaptation JPEG2000 

Notes

Acknowledgments

The sponsorship of the UK Engineering and Physical Sciences Research Council (EPSRC) by an EPSRC-BP (British Petroleum) Dorothy Hodgkin Postgraduate Award (DHPA) for this work is acknowledged.

References

  1. 1.
    Taubman, D.S., Marcellin, M.W.: JPEG2000 Image compression fundamentals, standards and practice. Springer, USA (2002)CrossRefGoogle Scholar
  2. 2.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circ. and Syst. for Video Tech 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  3. 3.
    Kandadai, S., Creusere, C.D.: Scalable audio compression at low bitrates. IEEE Trans. Audio, Speech, and Lang Process 16(5), 969–979 (2008)CrossRefGoogle Scholar
  4. 4.
    Burnett, I., de Walle, R.V., Hill, K., Bormans, J., Pereira, F.: MPEG-21: goals and achievements. IEEE Multimed 10(4), 60–70 (2003)CrossRefGoogle Scholar
  5. 5.
    Vetro, A.: MPEG-21 digital item adaptation: enabling universal multimedia access. IEEE Multimed. 11(1), 84–87 (2004)CrossRefGoogle Scholar
  6. 6.
    Xie, L., Arce, G.R.: Joint wavelet compression and authentication watermarking. In: Proceedings of the IEEE ICIP, vol. 2, pp. 427–431 (1998)Google Scholar
  7. 7.
    Huo, F., Gao, X.: A wavelet based image watermarking scheme. In: Proceedings of the IEEE ICIP, pp. 2573–2576 (2006)Google Scholar
  8. 8.
    Tao, H., Liu, J., Tian, J.: Digital watermarking technique based on integer Harr transforms and visual properties. In Proceedings of the SPIE image compression and encryption tech, vol. 4551-1, pp. 239–244 (2001) Google Scholar
  9. 9.
    Xia, X., Boncelet, C.G., Arce, G.R.: Wavelet transform based watermark for digital images. Optic. Express 3(12), 497–511 (1998)CrossRefGoogle Scholar
  10. 10.
    Al-Hudhud, G.: Adaptation of HVS sensitivity for perceptual modelling of wavelet-based Image Compression. In: Proceedings of the second international conference in visualisation, pp. 196–200 (2009)Google Scholar
  11. 11.
    Feng, X.C., Yang, Y.: A new watermarking method based on DWT. In Proceedings of the international conference on Computational Intelligence and Security, Lect. Notes in Comp. Sci. (LNCS), vol. 3802, pp. 1122–1126 (2005)Google Scholar
  12. 12.
    Gong Q., Shen H.: Toward blind logo watermarking in JPEG-compressed images. In Proceedings of the international conference on parallel and distributed comp., Appl. and Tech., (PDCAT), pp. 1058–1062 (2005)Google Scholar
  13. 13.
    Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. 10(5), 783–791 (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Kundur, D., Hatzinakos, D.: Toward robust logo watermarking using multiresolution image fusion principles. IEEE Trans. Multimed. 6(1), 185–198 (2004)CrossRefGoogle Scholar
  15. 15.
    Bhatnagar, G., Wuand, Q.M.J., Raman, B.: Robust gray-scale logo watermarking in wavelet domain. Comput. Electr. Eng. 38(5), 1164–1176 (2012) Google Scholar
  16. 16.
    Soheili, M.R.: Blind wavelet based logo watermarking resisting to cropping. In: Proceedings of the 20th international conference on pattern recognition, pp. 1449–1452 (2010)Google Scholar
  17. 17.
    Kundur, D., Hatzinakos, D.: Digital watermarking using multiresolution wavelet decomposition. In: Proceedings of the IEEE ICASSP, vol. 5, pp. 2969–2972 (1998) Google Scholar
  18. 18.
    Campisi, P., Neri, A., Visconti, M.: Wavelet-based method for high-frequency subband watermark embedding. In: Proceedings of the SPIE multimedia sys. and appl. III, vol. 4209, pp. 344–353 (2001)Google Scholar
  19. 19.
    Jin, C., Peng, J.: A robust wavelet-based blind digital watermarking algorithm. Inf.Technol. J. 5(2), 358–363 (2006)CrossRefGoogle Scholar
  20. 20.
    Meerwald, P, Uhl, A.: A survey of wavelet-domain watermarking algorithms. In: Proceedings of the SPIE security and watermarking of multimedia contents III, vol. 4314, pp. 505–516 (2001) Google Scholar
  21. 21.
    Yang, C.-Y., Hwang, W.-Y., Cheng, Y.-F.: IWT-based watermarking by adaptive bit-labeling scheme. In: Proceedings of the International conference on uintelligent information hiding and multimedia signal processing, pp. 1165–1168 (2008)Google Scholar
  22. 22.
    Zhang, Z., Mo, Y.L.: Embedding strategy of image watermarking in wavelet transform domain. In: Proceedings of the SPIE Image compression and encryption tech, vol. 4551-1, pp. 127–131 (2001) Google Scholar
  23. 23.
    Kim, J.R., Moon, Y.S.: A robust wavelet-based digital watermarking using level-adaptive thresholding. In: Proceedings of the IEEE ICIP, vol. 2, pp. 226–230 (1999)Google Scholar
  24. 24.
    Marusic, S., Tay, D.B.H., Deng, G., Marimuthu, P.: A study of biorthogonal wavelets in digital watermarking. In: Proceedings of the IEEE ICIP, vol. 3, pp. II–463–6 (2003)Google Scholar
  25. 25.
    Chen, T.-S., Chen, J., Chen, J.-G.: A simple and efficient watermarking technique based on JPEG2000 codec. In: Proceedings of the Intetnational Symp. on multimedia software Eng, pp. 80–87 (2003)Google Scholar
  26. 26.
    Meerwald, P.: Quantization watermarking in the JPEG2000 coding pipeline. In: Proceedings of the International on Comms. and Multimedia Security, pp. 69–79 (2001)Google Scholar
  27. 27.
    Sun, Q., Chang, S.: A secure and robust digital signature scheme for JPEG2000 image authentication. IEEE Trans. Multimed.7(3), 480–494 (2005)CrossRefGoogle Scholar
  28. 28.
    Dufaux, F., Wee, S.J., Apostolopoulos, J.G., Ebrahimi, T.: JPSEC for secure imaging in JPEG2000. In: Proceedings of the SPIE Appl. of digital image processing XXVII 5558-1:319–330 (2004) Google Scholar
  29. 29.
    Chunhua, L., Li, F.: Adaptive image watermarking algorithm based on biorthogonal wavelet transform. In: Proc Int’l Conf. on E-Business and E-Government (ICEE), pp. 1–4 (2011)Google Scholar
  30. 30.
    Grosbois, R., Gerbelot, P., Ebrahimi, T.: Authentication and access control in the JPEG2000 compressed domain. In: Proceedings of the SPIE Appl. of Digital Image Processing XXIV, vol. 4472-1, pp. 95–104 (2001) Google Scholar
  31. 31.
    Seo, Y.-S., Kim, M.-S., Park, H.-J., Jung, H.-Y., Chung, H.-Y., Huh, Y., Lee, J.-D.: A secure watermarking for JPEG2000. In: Proceedings of the IEEE ICIP, vol. 2, pp. 530–533 (2001)Google Scholar
  32. 32.
    Suhail, M.A., Obaidat, M.S., Ipson, S.S., Sadoun, B.: A comparative study of digital watermarking in JPEG and JPEG2000 environments. Inf. Sci. 151, 93–105 (2003)CrossRefMATHGoogle Scholar
  33. 33.
    Bhowmik, D., Abhayaratne, C.: Morphological wavelet domain image watermarking. In: Proceedings of the European signal processing conference (EUSIPCO), pp. 2539–2543 (2007)Google Scholar
  34. 34.
    Abhayaratne, C., Bhowmik, D.: Scalable watermark extraction for real-time authentication of JPEG2000 images. J. Real-Time Image. Process. 6(4), 19 (2011)Google Scholar
  35. 35.
    Sprljan, N., Mrak, M., Abhayaratne, G.C.K., Izquierdo, E.: A scalable coding framework for efficient video adaptation. In: Proceedings of the International Workshop on image analysis for multimedia interactive services (WIAMIS) (2005) Google Scholar
  36. 36.
    Bhowmik, D., Abhayaratne, C.: A generalised model for distortion performance analysis of wavelet based watermarking. In: Proceedings of the International Workshop on digital watermarking (IWDW ’08), Lect. Notes in Comp. Sci. (LNCS), vol. 5450, pp. 363–378 (2008)Google Scholar
  37. 37.
    Bhowmik, D., Abhayaratne, C.: Embedding distortion modeling for non-orthonormal wavelet based watermarking schemes. In: Proceedings of the SPIE Wavelet App. in industrial processing VI, vol. 7248, pp. 72480K (2009)Google Scholar
  38. 38.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl. 4(3), 245–267 (1998)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Abhayaratne, G.C.K., Heijmans, H.: A novel morphological subband decomposition scheme for 2D+t wavelet video coding. In: Proceedings of the International Symp on image and signal pocessing and analysis, vol. 1, pp. 239–244 (2003)Google Scholar
  40. 40.
    Hampson, F.J., Pesquet, J.-C.: A nonlinear subband decomposition with perfect reconstruction. In: Proceedings of the IEEE ICASSP, vol. 3, pp. 1523–1526 (1996)Google Scholar
  41. 41.
    Heijmans, H., Goutsias, J.: Nonlinear multiresolution signal decomposition schemes: Part II: morphological wavelets. IEEE Trans. Image Process.9(11), 1897–1913 (2000)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Proceedings of the 10th European Conference on Computer Vision: Part I (ECCV’08), pp. 304–317. Springer, Berlin (2008)Google Scholar
  43. 43.
    Bhowmik, D., Abhayaratne, C.: The effect of quality scalable image compression on robust watermarking. In: Proceedings of the international workshop on digital signal processing, pp. 1–8 (2009) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Vision Lab, Institute of Sensors Signals and SystemsHeriot-Watt UniversityEdinburghUK
  2. 2.Department of Electronic and Electrical EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations